Abstract
A discrete correlation-filter-based multi-cue-analysis framework is constructed by fusing different feature types to form potential candidate trackers that track the target independently. The selection of corresponding cues and the exploitation of their individual or combined strengths is a less researched topic especially in the context of ensemble tracking. Every candidate tracker from the ensemble is chosen according to the degree of its robustness per frame. We argue that, if each of the candidate trackers is guided by higher-level semantic information (i.e. pixel-wise saliency maps in ensemble-based tracker), this will make tracking better to cope with appearance or view point changes. Recently, saliency prediction using deep architectures have made this process accurate and fast. The formation of multiple candidate trackers by saliency-guided features along with other different handcrafted and hierarchical feature types enhances the robustness score for that specific tracker. It improved multiple tracker-based DCF frameworks in efficiency and accuracy as reported in our experimental evaluation, compared to state-of-the-art ensemble trackers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: IEEE Conference on Computer Vision Pattern Recognition, vol. 1, pp. 798–805 (2011)
Aytekin, C., Cricri, F., Aksu, E.: Saliency-enhanced robust visual tracking. In: European Workshop Visual Information Processing arXiv:1802.02783 (2018)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2010)
Bailer, C., Pagani, A., Stricker, D.: A superior tracking approach: building a strong tracker through fusion. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 170–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_12
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 2544–2550 (2010)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision Pattern Recognition (2005)
Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4310–4318 (2015)
Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29
Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: Eco: efficient convolution operators for tracking. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 6638–6646 (2017)
Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference (2014)
Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: IEEE Conference on Computer Vision Pattern Recognition, pp. 1177–1184 (2011)
Hare, S., et al.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2015)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)
Khalid, O., SanMiguel, J.C., Cavallaro, A.: Multi-tracker partition fusion. IEEE Trans. Circ. Syst. Video Technol. 27(7), 1527–1539 (2016)
Kristan, M., et al.: The visual object tracking VOT2016 challenge results. In: Proceedings of the European Conference on Computer Vision Workshops, pp. 777–823 (2016)
Kristan, M., et al.: The visual object tracking VOT2017 challenge results. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1949–1972 (2017)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: IEEE Conference on Computer Vision Pattern Recognition, pp. 1269–1276 (2010)
Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: IEEE International Conference on Computer Vision, pp. 1195–1202 (2010)
Li, J., Deng, C., Da Xu, R.Y., Tao, D., Zhao, B.: Robust object tracking with discrete graph-based multiple experts. IEEE Trans. Image Process. 26(6), 2736–2750 (2017)
Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 1305–1312 (2011)
Lin, Z., Hua, G., Davis, L.S.: Multiple instance feature for robust part-based object detection. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 405–412 (2009)
Liu, N., Han, J.: DhsNet: deep hierarchical saliency network for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 678–686 (2016)
Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. In: IEEE Conference on Computer Vision Pattern Recognition, pp. 1313–1320 (2011)
Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3074–3082 (2015)
Perazzi, F., Krahenbuhl, P., Pritch, Y., Hornung, A.: Saliency filters, contrast based filtering for salient region detection. In: Proceedings IEEE Conference on Computing Vision Pattern Recognition, pp. 733–740 (2012)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Tavakoli, H.R., Moin, M.S., Heikkila, J.: Local similarity number and its application to object tracking. Int. J. Adv. Robot. Syst. 10(3), 184 (2013)
Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)
Vedaldi, A., Lenc, K.: MatConvNet: convolutional neural networks for Matlab. In: ACM International Conference on Multimedia, pp. 689–692 (2015)
Wang, N., Zhou, W., Tian, Q., Hong, R., Wang, M., Li, H.: Multi-cue correlation filters for robust visual tracking. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 4844–4853 (2018)
Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)
Zhang, J., Ma, S., Sclaroff, S.: MEEM: robust tracking via multiple experts using entropy minimization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 188–203. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_13
Zhang, P., Wang, D., Lu, H., Wang, H.: Non-rigid object tracking via deep multi-scale spatial-temporal discriminative saliency maps. arXiv preprint arXiv:1802.07957 (2018)
Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 127–141. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fouzia, S., Bell, M., Klette, R. (2019). Improved Saliency-Enhanced Multi-cue Correlation-Filter-Based Visual Tracking. In: Lee, C., Su, Z., Sugimoto, A. (eds) Image and Video Technology. PSIVT 2019. Lecture Notes in Computer Science(), vol 11854. Springer, Cham. https://doi.org/10.1007/978-3-030-34879-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-34879-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34878-6
Online ISBN: 978-3-030-34879-3
eBook Packages: Computer ScienceComputer Science (R0)