Skip to main content

BackNet: An Enhanced Backbone Network for Accurate Detection of Objects with Large Scale Variations

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11854))

Included in the following conference series:

  • 1293 Accesses

Abstract

Deep Convolutional Neural Networks (CNNs) have induced significant progress in the field of computer vision including object detection and classification. Two-stage detectors like Faster RCNN and its variants are found to be more accurate compared to its one-stage counter-parts. Faster RCNN combines an ImageNet pretrained backbone network (e.g VGG16) and a Region Proposal Network (RPN) for object detection. Although Faster RCNN performs well on medium and large scale objects, detecting smaller ones with high accuracy while maintaining stable performance on larger objects still remains a challenging task. In this work, we focus on designing a robust backbone network for Faster RCNN that is capable of detecting objects with large variations in scale. Considering the difficulties posed by small objects, our aim is to design a backbone network that allows signals extracted from small objects to be propagated right through to the deepest layers of the network. This being our motivation, we propose a robust network: BackNet, which can be integrated as a backbone into any two-stage detector. We evaluate the performance of BackNet-Faster RCNN on MS COCO dataset and show that the proposed method outperforms five contemporary methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teng, S.W., Hossain, M.T., Lu, G.: Multimodal image registration technique based on improved local feature descriptors. J. Electron. Imaging 24(1), 013013 (2015)

    Article  Google Scholar 

  2. Fattal, A.-K., Karg, M., Scharfenberger, C., Adamy, J.: Distant vehicle detection: how well can region proposal networks cope with tiny objects at low resolution? In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 289–304. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_17

    Chapter  Google Scholar 

  3. Gao, Y., et al.: Scale optimization for full-image-CNN vehicle detection. Paper presented at the 2017 IEEE Intelligent Vehicles Symposium (IV) (2017)

    Google Scholar 

  4. Girshick, R. Fast R-CNN. Paper presented at the proceedings of the IEEE international conference on computer vision (2015)

    Google Scholar 

  5. Yang, W., Li, S., Ouyang, W., Li, H., Wang, X. Learning feature pyramids for human pose estimation. Paper presented at the proceedings of the IEEE international conference on computer vision (2017)

    Google Scholar 

  6. Zhou, P., Ni, B., Geng, C., Hu, J., Xu, Y. Scale-transferrable object detection. Paper presented at the proceedings of the IEEE conference on computer vision and pattern recognition (2018)

    Google Scholar 

  7. Yang, F., Choi, W., Lin, Y. Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. Paper presented at the proceedings of the IEEE conference on computer vision and pattern recognition (2016)

    Google Scholar 

  8. Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R.: Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. Paper presented at the proceedings of the IEEE conference on computer vision and pattern recognition (2016)

    Google Scholar 

  9. Hu, P., Ramanan, D.: Finding tiny faces. Paper presented at the proceedings of the IEEE conference on computer vision and pattern recognition (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  13. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  15. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Detnet: a backbone network for object detection. arXiv preprint arXiv:1804.06215 (2018)

  16. Chen, X., Gupta, A.: An implementation of faster RCNN with study for region sampling. arXiv preprint arXiv:1702.02138 (2017)

  17. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15825-4_10

    Chapter  Google Scholar 

  18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  19. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  Google Scholar 

  20. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  21. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  22. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  23. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22

    Chapter  Google Scholar 

  24. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vision 104(2), 154–171 (2013)

    Article  Google Scholar 

  25. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  26. Girshick, R.B., Felzenszwalb, P.F., McAllester, D.: Discriminatively trained deformable part models, release 5 (2012)

    Google Scholar 

  27. Zhang, N., Farrell, R., Iandola, F., Darrell, T.: Deformable part descriptors for fine-grained recognition and attribute prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 729–736 (2013)

    Google Scholar 

  28. Azizpour, H., Laptev, I.: Object detection using strongly-supervised deformable part models. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 836–849. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_60

    Chapter  Google Scholar 

  29. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conf. CVPR, vol. 2, pp. 886–893, June 2005

    Google Scholar 

  30. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  31. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  32. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  33. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2015)

    Article  Google Scholar 

  34. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  35. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  36. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection snip. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587 (2018)

    Google Scholar 

  37. Hossain, M.T., Teng, S.W., Zhang, D., Lim, S., Lu, G.: Distortion robust image classification using deep convolutional neural network with discrete cosine transform. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 659–663 (2019)

    Google Scholar 

  38. Wang, W., Wu, B., Lv, J., Dai, P.: Regular and Small Target Detection. Paper presented at the international conference on multimedia modeling (2019)

    Google Scholar 

Download references

Acknowledgement

This work has been Funded by Federation University Australia research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Tahmid Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossain, M.T., Teng, S.W., Lu, G. (2019). BackNet: An Enhanced Backbone Network for Accurate Detection of Objects with Large Scale Variations. In: Lee, C., Su, Z., Sugimoto, A. (eds) Image and Video Technology. PSIVT 2019. Lecture Notes in Computer Science(), vol 11854. Springer, Cham. https://doi.org/10.1007/978-3-030-34879-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34879-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34878-6

  • Online ISBN: 978-3-030-34879-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics