Skip to main content

Evolutionary Art with an EEG Fitness Function

  • Conference paper
  • First Online:
Artificial Intelligence XXXVI (SGAI 2019)

Abstract

This project involved the use of an interactive Genetic Algorithm (iGA) with an electroencephalogram (EEG)-based fitness function to create paintings in the style of Piet Mondrian, a Dutch painter who used geometric elements in his later paintings. Primary data for the prototype was gathered by analysis of twenty-seven existing Mondrian paintings. An EEG gaming headset was used to read EEG signals, which were transmitted by Bluetooth to an Arduino running an iGA. These values were used as the iGA fitness function. The data was sent to a PC running Processing to display the artwork. The resultant displayed artwork evolves to favour higher attention and meditation levels, which are considered to represent greater mindfulness. The process ends when the observer identifies a piece of art they would like to keep. However, convergence of the algorithm is difficult to test as many parameters can affect the process. A number of issues arising from the research are discussed and further work is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blotkamp, C.: Mondrian: The Art of Destruction. Reaktion Books (2001). ISBN: 9781861891006

    Google Scholar 

  2. De Jong, C.: Piet Mondrian: Life and Work. Abrams (2015). ISBN: 9781419714085. Knuth

    Google Scholar 

  3. Bris-Marino, P.: La influencia de la teosofía sobre la obra neoplástica de Mondrian. Arte, Individuo y Sociedad 26 (2014). https://doi.org/10.5209/rev_ARIS.2014.v26.n3.42960

  4. Foundation, The Art Story: De Stijl (2019). https://www.theartstory.org/movement-de-stijl.htm. Accessed 12 Nov 2018

  5. Edmonds, E.: Interactive Art (n.d.). https://pdfs.semanticscholar.org/e245/971a.pdf. Accessed 15 Nov 2018

  6. Tempel, M.: Generative art for all. J. Innov. Entrep. 6 (2017). https://doi.org/10.1186/s13731-017-0072-1

  7. Cohen, H.: 1988-How to Draw Three People in a Botanical Garden 10 (n.d.)

    Google Scholar 

  8. Sheridan, S.L.: Mind/senses/hand: the generative systems program at the art institute of Chicago 1970-1980. Leonardo 23, 175 (1990). https://doi.org/10.2307/1578602

    Article  Google Scholar 

  9. Schwartz, L.F.: Art Analysis - 1984 THE HIDDEN MONALISA (1984). http://lillian.com/art-analysis/. Accessed 20 Nov 2018

  10. Reas, C., Fry, B.: Processing: A Programming Handbook for Visual Designers and Artists. The MIT Press, Cambridge (2015). ISBN: 9780262321853

    Google Scholar 

  11. Arduino Platform. https://www.arduino.cc/. Accessed 20 June 2019

  12. Fee, D.: Supplementing Fine Art Education with Digital Interactivity 49 (n.d.)

    Google Scholar 

  13. Shen, J.Y., Gedeon, T.: Cyber-Genetic Neo-Plasticism – an AI program creating Mondrian-like paintings by using interactive bacterial evolution algorithm (2007). http://cs.anu.edu.au/escience/project/06S2/report/JianShen_report.pdf

  14. Melanie, M.: An Introduction to Genetic Algorithms 162 (n.d.)

    Google Scholar 

  15. Banzhaf, W., et al.: Genetic Programming Arduino (2019). Arduino. https://www.arduino.cc/. Accessed 02 Dec 2018

  16. Darwin, C.: On The Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life, p. 1859. John Murray, London (1809–1882)

    Google Scholar 

  17. Hudson, D.L., Cohen, M.E.: Neural Networks and Artificial Intelligence for Biomedical Engineering. IEEE Press Series in Biomedical Engineering. Institute of Electrical and Electronics Engineers, New York (2000)

    Google Scholar 

  18. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  19. Thierens, D., Goldberg, D.: Convergence models of genetic algorithm selection schemes. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 119–129. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_256

    Chapter  Google Scholar 

  20. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

    Article  Google Scholar 

  21. WillPhelps1. https://gist.github.com/WillPhelps1/4da7f9b2eb718340bedf885b63c9f729. Accessed 02 July 2019

  22. Google Cloud: Vision API (2018). https://cloud.google.com/vision/. Accessed 27 December 2018

  23. James-Reynolds, C., Currie, E.: EEuGene: employing electroencephalograph signals in the rating strategy of a hardware-based interactive genetic algorithm. In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXXIII, pp. 343–353. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47175-4_25

    Chapter  Google Scholar 

  24. NeuroSky: NeuroSky Brainwave Starter Kit (2018). https://store.neurosky.com/pages/mindwave. Accessed 01 Feb 2019

  25. Microchip RN-41. https://www.microchip.com/wwwproducts/en/RN41. Accessed 02 July 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl James-Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nĕmečková, I., James-Reynolds, C., Currie, E. (2019). Evolutionary Art with an EEG Fitness Function. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXVI. SGAI 2019. Lecture Notes in Computer Science(), vol 11927. Springer, Cham. https://doi.org/10.1007/978-3-030-34885-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34885-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34884-7

  • Online ISBN: 978-3-030-34885-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics