Skip to main content

A High Performance Modified K-Means Algorithm for Dynamic Data Clustering in Multi-core CPUs Based Environments

  • Conference paper
  • First Online:
Internet and Distributed Computing Systems (IDCS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11874))

Included in the following conference series:

Abstract

K-means algorithm is one of the most widely used methods in data mining and statistical data analysis to partition several objects in K distinct groups, called clusters, on the basis of their similarities. The main problel and distributed clustering algorithms start to be designem of this algorithm is that it requires the number of clusters as an input data, but in the real life it is very difficult to fix in advance such value. In this work we propose a parallel modified K-means algorithm where the number of clusters is increased at run time in a iterative procedure until a given cluster quality metric is satisfied. To improve the performance of the procedure, at each iteration two new clusters are created, splitting only the cluster with the worst value of the quality metric. Furthermore, experiments in a multi-core CPUs based environment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abubaker, M., Ashour, W.M.: Efficient data clustering algorithms: improvements over K-means. Int. J. Intell. Syst. Appl. 5, 37–49 (2013)

    Google Scholar 

  2. Aggarwal, C.C., Reddy, C.K.: Data Clustering, Algorithms and Applications. Chapman and Hall/CRC, London (2013)

    Book  Google Scholar 

  3. Andrade, G., Ramos, G., Madeira, D., Sachetto, R., Ferreira, R., Rocha, L.: G-DBSCAN: a GPU accelerated algorithm for density-based clustering. Procedia Comput. Sci. 18, 369–378 (2013)

    Article  Google Scholar 

  4. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB: enabling fault tolerance in parallel applications running in distributed environments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 700–709. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31464-3_71

    Chapter  Google Scholar 

  5. Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a grid enabling, component based programming environment. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 982–992. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380_100

    Chapter  Google Scholar 

  6. D’Ambra, P., Danelutto, M., di Serafino, D., Lapegna, M.: Advanced environments for parallel and distributed applications: a view of the current status. Parallel Comput. 28, 1637–1662 (2002)

    Article  Google Scholar 

  7. D’Ambra, P., Danelutto, M., di Serafino, D., Lapegna, M.: Integrating MPI-based numerical software into an advanced parallel computing environment. In: Proceedings of the Eleventh Euromicro Conference on Parallel Distributed and Network-based Procesing, Clematis ed., pp. 283–291. IEEE (2003)

    Google Scholar 

  8. D’Apuzzo, M., Lapegna, M., Murli, A.: Scalability and load balancing in adaptive algorithms for multidimensional integration. Parallel Comput. 23, 1199–1210 (1997)

    Article  MathSciNet  Google Scholar 

  9. Di Fatta, G., Blasa, F., Cafiero, S., Fortino, G.: Fault tolerant decentralised K-means clustering for asynchronous large-scale networks. J. Parallel Distrib. Comput. 73(2013), 317–329 (2013)

    Article  Google Scholar 

  10. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2017). http://archive.ics.uci.edu/ml

  11. Frey, P.W., Slate, D.J.: Letter recognition using Holland-style adaptive classifiers. Mach. Learn. 6, 161–182 (1991)

    Google Scholar 

  12. Gan, D.G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia. ASA, Alexandria (2007)

    Google Scholar 

  13. Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled MPI library. Future Gener. Comput. Syst. 24, 158–165 (2008)

    Article  Google Scholar 

  14. He, Y., Tan, H., Luo, W., Feng, S., Fan, J.: MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data. Front. Comput. Sci. 8, 83–99 (2014)

    Article  MathSciNet  Google Scholar 

  15. Huang, Z.X.: Extensions to the K-means algorithm for clustering large datasets with categorical values. Data Min. Knowl. Disc. 2, 283–304 (1998)

    Article  Google Scholar 

  16. Joshi, A., Kaur, R.: A review: comparative study of various clustering techniques in data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3, 55–57 (2013)

    Google Scholar 

  17. Karypis, G., Kumar, V.: Parallel multilevel K-way partitioning for irregular graphs. SIAM Rev. 41, 278–300 (1999)

    Article  MathSciNet  Google Scholar 

  18. Laccetti, G., Lapegna, M.: PAMIHR. a parallel FORTRAN program for multidimensional quadrature on distributed memory architectures. In: Amestoy, P., et al. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp. 1144–1148. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48311-X_160

    Chapter  Google Scholar 

  19. Laccetti, G., Lapegna, M., Mele, V., Montella, R.: An adaptive algorithm for high-dimensional integrals on heterogeneous CPUGPU systems. Concurr. Comput. Pract. Exp. 31, e4945 (2018)

    Google Scholar 

  20. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive algorithm for multidimensional integration on multicore based HPC systems. Int. J. Parallel Program. 40, 397–409 (2012)

    Article  Google Scholar 

  21. Laccetti, G., Lapegna, M., Mele, V., Romano, D.: A study on adaptive algorithms for numerical quadrature on heterogeneous GPU and multicore based systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 704–713. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_66

    Chapter  Google Scholar 

  22. Laccetti, G., Lapegna, M., Mele, V.: A loosely coordinated model for heap-based priority queues in multicore environments. Int. J. Parallel Prog. 44, 901–921 (2016)

    Article  Google Scholar 

  23. Lapegna, M.: A global adaptive quadrature for the approximate computation of multidimensional integrals on a distributed memory multiprocessor. Concurr. Pract. Exp. 4, 413–426 (1992)

    Article  Google Scholar 

  24. Patibandla, R.S.M.L., Veeranjaneyulu, N.: Survey on clustering algorithms for unstructured data. In: Bhateja, V., Coello Coello, C.A., Satapathy, S.C., Pattnaik, P.K. (eds.) Intelligent Engineering Informatics. AISC, vol. 695, pp. 421–429. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7566-7_41

    Chapter  Google Scholar 

  25. Pelleg, D., Moore, A.W.: X-means: extending k-means with efficient estimation of the number of clusters. In: Proceedings of the 17th International Conference on Machine Learning, pp. 727–734. Morgan Kaufmann (2000)

    Google Scholar 

  26. Pena, J.M., Lozano, J.A., Larranaga, P.: An empirical comparison of four initialization methods for the K-means algorithm. Pattern Recogn. Lett. 20, 1027–1040 (1999)

    Article  Google Scholar 

  27. Shindler, M., Wong, A., Meyerson, A.: Fast and accurate k-means for large datasets. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F.C.N., Weinberger, K.Q. (eds.): Proceedings of 25th Annual Conference on Neural Information Processing Systems, pp. 2375–2383 (2011)

    Google Scholar 

  28. Shirkhorshidi, A.S., Aghabozorgi, S., Wah, T.Y., Herawan, T.: Big data clustering: a review. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8583, pp. 707–720. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09156-3_49

    Chapter  Google Scholar 

  29. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2, 165–193 (2015)

    Article  Google Scholar 

  30. Xu, R., Wunsch, D.: Survey of clustering algorithms. Trans. Neural Netw. 16, 645–678 (2005)

    Article  Google Scholar 

  31. Zhao, W., Ma, H., He, Q.: Parallel K-means clustering based on MapReduce. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 674–679. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10665-1_71

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lapegna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laccetti, G., Lapegna, M., Mele, V., Romano, D. (2019). A High Performance Modified K-Means Algorithm for Dynamic Data Clustering in Multi-core CPUs Based Environments. In: Montella, R., Ciaramella, A., Fortino, G., Guerrieri, A., Liotta, A. (eds) Internet and Distributed Computing Systems . IDCS 2019. Lecture Notes in Computer Science(), vol 11874. Springer, Cham. https://doi.org/10.1007/978-3-030-34914-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34914-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34913-4

  • Online ISBN: 978-3-030-34914-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics