Abstract
We are interested in describing timed systems that exhibit probabilistic behaviour and in evaluating their behavioural discrepancies. To this purpose, we consider probabilistic timed automata, we introduce a concept of n-bisimilarity metric and give an algorithm to decide it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Recall that probabilities and \(d_{{\mathsf {G}}}(z)\) are rationals.
References
de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Softw. Eng. 35(2), 258–273 (2009)
de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.): REX 1991. LNCS, vol. 600. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031984
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)
Asarin, E., Basset, N., Degorre, A.: Distance on timed words and applications. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp. 199–214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3_12
Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of bisimilarity distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_1
Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly computation of bisimilarity distances. Logical Methods Comput. Sci. 13(2) (2017)
Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Converging from branching to linear metrics on Markov Chains. Math. Struct. Comp. Sci. 29(1), 3–37 (2019)
Bacci, G., Bacci, G., Larsen, K.G., Mardare, R., Tang, Q., van Breugel: F.: Computing probabilistic bisimilarity distances for probabilistic automata. In: CONCUR. LIPiCS, vol. 140, pp. 9:1–9:17 (2019)
Beauquier, D.: On probabilistic timed automata. Theor. Comput. Sci. 292, 65–84 (2003)
Bertrand, N., et al.: Stochastic timed automata. Log. Meth. Comp. Sci. 10 (2014)
Bouyer, P.: Forward analysis of updatable timed automata. Formal Meth. Syst, Des. 24, 281–320 (2004)
Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theoret. Comput. Sci. 321(2–3), 291–345 (2004)
van Breugel, F.: On behavioural pseudometrics and closure ordinals. Inf. Process. Lett. 112(19), 715–718 (2012)
van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theoret. Comput. Sci. 331(1), 115–142 (2005)
van Breugel, F., Sharma, B., Worrell, J.: Approximating a behavioural pseudometric without discount. Log. Methods Comput. Sci. 4(2) (2008)
van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theor. Comput. Sci. 360(1), 373–385 (2006)
van Breugel, F., Worrell, J.: The complexity of computing a bisimilarity pseudometric on probabilistic automata. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panangaden. LNCS, vol. 8464, pp. 191–213. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06880-0_10
Castiglioni, V., Gebler, D., Tini, S.: Logical characterization of bisimulation metrics. In: QAPL 2016. EPTCS, vol. 227, pp. 44–62 (2016)
Castiglioni, V., Tini, S.: Logical characterization of branching metrics for nondeterministic probabilistic transition systems. Inf. Comput. 268 (2019)
Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56496-9_24
Chatterjee, K., Ibsen-Jensen, R., Majumdar, R.: Edit distance for timed automata. In: HSCC14, pp. 303–312. ACM (2014)
Chatterjee, K., Prabhu, V.S.: Quantitative temporal simulation and refinement distances for timed systems. IEEE Trans. Automat. Contr. 60(9), 2291–2306 (2015)
Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilistic bisimilarity. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 437–451. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9_29
Chen, T., Han, T., Katoen, J.: Time-abstracting bisimulation for probabilistic timed automata. In: TASE08, pp. 177–184. IEEE (2008)
David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. STTT 17(4), 397–415 (2015)
Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quantitative transition systems. QAPL. ENTCS 153(2), 79–96 (2006)
Deng, Y., Du, W.: The kantorovich metric in computer science: a brief survey. QAPL. ENTCS 253(3), 73–82 (2009)
Desharnais, J., Gupta, J., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theoret. Comput. Sci. 318(3), 323–354 (2004)
Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-8_17
Ferns, N., Panangaden, P., Precup, D.: Metrics for finite markov decision processes. In: UAI, pp. 162–169. AUAI Press (2004)
Giacalone, A., Jou, C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: IFIP TC2 PROCOMET (1990)
Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comp. 111(2), 193–244 (1994)
Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 226–241. Springer, Heidelberg (2005). https://doi.org/10.1007/11603009_18
Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theoret. Comput. Sci. 282, 101–150 (2002)
Kwiatkowska, M., Norman, G.: Probabilistic metric semantics for a simple language with recursion. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 419–430. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61550-4_167
Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Weak bisimulation for probabilistic timed automata. Theor. Comput. Sci. 411(50), 4291–4322 (2010)
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)
Majumdar, R., Prabhu, V.S.: Computing the Skorokhod distance between polygonal traces. In: HSCC15, pp. 199–208. ACM (2015)
Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Formal Methods Syst. Des. 43, 164–190 (2013)
Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, MIT (1995)
Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_16
Sproston, J., Troina, A.: Simulation and bisimulation for probabilistic timed automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 213–227. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_17
Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric systems. Ph.D. thesis, University of Nijmegen, The Netherlands (2002)
Tang, Q., van Breugel, F.: Computing probabilistic bisimilarity distances via policy iteration. In: CONCUR, pp. 22:1–22:15. LIPIcs (2016)
Tang, Q., van Breugel, F.: Algorithms to compute probabilistic bisimilarity distances for Labelled Markov Chains. In: CONCUR, pp. 27:1–27:16. LIPiCS (2017)
TaŞiran, S., Alur, R., Kurshan, R.P., Brayton, R.K.: Verifying abstractions of timed systems. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 546–562. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7_75
Yamane, S.: Probabilistic timed simulation verification and its application to stepwise refinement of real-time systems. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp. 276–290. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40965-6_18
Younes, H.L.S.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Pittsburgh, PA, USA (2004)
Yovine, S.: Model checking timed automata. In: Rozenberg, G., Vaandrager, F.W. (eds.) EEF School 1996. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65193-4_20
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Lanotte, R., Tini, S. (2019). Computing Bisimilarity Metrics for Probabilistic Timed Automata. In: Ahrendt, W., Tapia Tarifa, S. (eds) Integrated Formal Methods. IFM 2019. Lecture Notes in Computer Science(), vol 11918. Springer, Cham. https://doi.org/10.1007/978-3-030-34968-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-34968-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34967-7
Online ISBN: 978-3-030-34968-4
eBook Packages: Computer ScienceComputer Science (R0)