Skip to main content

Sound Probabilistic Numerical Error Analysis

  • Conference paper
  • First Online:
Integrated Formal Methods (IFM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11918))

Included in the following conference series:

Abstract

Numerical software uses floating-point arithmetic to implement real-valued algorithms which inevitably introduces roundoff errors. Additionally, in an effort to reduce energy consumption, approximate hardware introduces further errors. As errors are propagated through a computation, the result of the approximated floating-point program can be vastly different from the real-valued ideal one. Previous work on soundly bounding (roundoff) errors has focused on worst-case absolute error analysis. However, not all inputs and not all errors are equally likely such that these methods can lead to overly pessimistic error bounds.

In this paper, we present a sound probabilistic static analysis which takes into account the probability distributions of inputs and propagates roundoff and approximation errors probabilistically through the program. We observe that the computed probability distributions of errors are hard to interpret, and propose an alternative metric and computation of refined error bounds which are valid with some probability.

D. Lohar—The author is supported by DFG grant DA 1898/2-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All benchmarks are available at https://people.mpi-sws.org/~dlohar/assets/code/Benchmarks.txt.

References

  1. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 (2008)

    Google Scholar 

  2. GLPK (2012). https://www.gnu.org/software/glpk/

  3. Project Sklearn-porter (2018). https://github.com/nok/sklearn-porter

  4. Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of p-boxes to affine arithmetic. Computing 94(2–4), 189–201 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bouissou, O., Goubault, E., Putot, S., Chakarov, A., Sankaranarayanan, S.: Uncertainty propagation using probabilistic affine forms and concentration of measure inequalities. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 225–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_13

    Chapter  MATH  Google Scholar 

  6. Carpenter, B., et al.: Stan: a probabilistic programming language. J. Stat. Softw. Art. 76(1), 1–32 (2017)

    Google Scholar 

  7. Damouche, N., Martel, M., Chapoutot, A.: Improving the numerical accuracy of programs by automatic transformation. Int. J. Softw. Tools Technol. Transfer 19(4), 427–448 (2017)

    Article  Google Scholar 

  8. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy - framework for analysis and optimization of numerical programs (tool paper). In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 270–287. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_15

    Chapter  Google Scholar 

  9. Darulova, E., Kuncak, V.: Towards a compiler for reals. TOPLAS 39(2), 8 (2017)

    Article  Google Scholar 

  10. Daumas, M., Lester, D., Martin-Dorel, E., Truffert, A.: Improved bound for stochastic formal correctness of numerical algorithms. Innovations Syst. Softw. Eng. 6(3), 173–179 (2010)

    Article  Google Scholar 

  11. De Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted verification of elementary functions using Gappa. In: ACM Symposium on Applied Computing (2006)

    Google Scholar 

  12. Dhiflaoui, M., et al.: Certifying and repairing solutions to large LPs. How good are LP-solvers? In: SODA, pp. 255–256 (2003)

    Google Scholar 

  13. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S., Sentz, K.: Constructing probability boxes and Dempster-Shafer structures. Technical report, Sandia National Laboratories (2003)

    Google Scholar 

  14. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37(1–4), 147–158 (2004)

    Article  MathSciNet  Google Scholar 

  15. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_17

    Chapter  Google Scholar 

  16. Izycheva, A., Darulova, E.: On sound relative error bounds for floating-point arithmetic. In: FMCAD (2017)

    Google Scholar 

  17. Keil, C.: Lurupa - rigorous error bounds in linear programming. In: Algebraic and Numerical Algorithms and Computer-assisted Proofs. No. 05391 in Dagstuhl Seminar Proceedings (2006). http://drops.dagstuhl.de/opus/volltexte/2006/445

  18. Lohar, D., Darulova, E., Putot, S., Goubault, E.: Discrete choice in the presence of numerical uncertainties. In: EMSOFT (2018)

    Google Scholar 

  19. Magron, V., Constantinides, G., Donaldson, A.: Certified roundoff error bounds using semidefinite programming. ACM Trans. Math. Softw. 43(4), 34 (2017)

    Article  MathSciNet  Google Scholar 

  20. Minka, T., et al.: Infer.NET 2.6 (2014). http://research.microsoft.com/infernet

  21. Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 62–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_4

    Chapter  Google Scholar 

  22. Misailovic, S., Carbin, M., Achour, S., Qi, Z., Rinard, M.C.: Chisel: reliability- and accuracy-aware optimization of approximate computational kernels. In: OOPSLA (2014)

    Google Scholar 

  23. Moore, R.: Interval Analysis. Prentice-Hall, Upper Saddle River (1966)

    MATH  Google Scholar 

  24. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.A.: Automatic estimation of verified floating-point round-off errors via static analysis. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 213–229. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66266-4_14

    Chapter  Google Scholar 

  25. Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: an efficient MCMC sampler for probabilistic programs. In: AAAI (2014)

    Google Scholar 

  26. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze, L.: Expressing and verifying probabilistic assertions. In: PLDI (2014)

    Google Scholar 

  27. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.: EnerJ: approximate data types for safe and general low-power computation. In: PLDI (2011)

    Google Scholar 

  28. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic programs: inferring whole program properties from finitely many paths. In: PLDI (2013)

    Google Scholar 

  29. Scott, N.S., Jézéquel, F., Denis, C., Chesneaux, J.M.: Numerical ‘health check’ for scientific codes: the CADNA approach. Comput. Phys. Commun. 176(8), 507–521 (2007)

    Article  Google Scholar 

  30. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  31. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic Taylor expansions. In: FM (2015)

    Google Scholar 

  32. Tang, E., Barr, E., Li, X., Su, Z.: Perturbing numerical calculations for statistical analysis of floating-point program (in)stability. In: ISSTA (2010)

    Google Scholar 

  33. Xu, Q., Mytkowicz, T., Kim, N.S.: Approximate computing: a survey. IEEE Des. Test 33(1), 8–22 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasmita Lohar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lohar, D., Prokop, M., Darulova, E. (2019). Sound Probabilistic Numerical Error Analysis. In: Ahrendt, W., Tapia Tarifa, S. (eds) Integrated Formal Methods. IFM 2019. Lecture Notes in Computer Science(), vol 11918. Springer, Cham. https://doi.org/10.1007/978-3-030-34968-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34968-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34967-7

  • Online ISBN: 978-3-030-34968-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics