Skip to main content

A Topological View of Partitioning Arguments: Reducing k-Set Agreement to Consensus

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2019)

Abstract

The objective of this paper is to understand the effect of partitioning in distributed computing models. In spite of being quite similar agreement problems, (deterministic) consensus (1-set agreement) and k-set agreement (for \(k>1\)) require surprisingly different techniques for proving impossibilities. There is a widely applicable generic theorem, however, which allows to reduce the impossibility of k-set agreement to consensus in message-passing models that allow some partitioning. In this paper, we provide the topological representation of this theorem, which reveals how partitioning is reflected in the protocol complex: It turns out that this leads to a “color splitting” of the algorithm’s decision map, which separates the sub-complexes representing the partitioned processes. We also harvest a general advantage of topological results, which allowed us to carry over our findings to shared memory systems. We first demonstrate the utility of our reduction theorem by proving that d-set agreement cannot be solved in the d-solo asynchronous read-write model even when a single process may crash, not just in the wait-free case. Moreover, our new insights into the structure of protocol complexes gave us the idea for a simple proof of the fact that no partitioning argument can provide a valid impossibility proof for wait-free set agreement in the iterated immediate snapshot model: For any set of partition-compatible runs (which do not contain runs where all processes always have a complete view), we provide a way to construct a simple algorithm that solves set agreement.

This work has been supported by the PAPIIT-UNAM grant IN109917 and the Austrian Science Fund (FWF) projects RiSE/SHiNE (S11405) and ADynNet (P28182).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lacking space forced us to relegate all proofs into the full version [22] of our paper.

  2. 2.

    Note that the original BRS theorem actually assumed that every process starts with a unique value.

References

  1. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: The k-simultaneous consensus problem. Distrib. Comput. 22(3), 185–195 (2010). https://doi.org/10.1007/s00446-009-0090-8

    Article  MATH  Google Scholar 

  2. Alistarh, D., Aspnes, J., Ellen, F., Gelashvili, R., Zhu, L.: Why extension-based proofs fail. CoRR abs/1811.01421 (2018)

    Google Scholar 

  3. Alistarh, D., Aspnes, J., Ellen, F., Gelashvili, R., Zhu, L.: Why extension-based proofs fail. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp. 986–996 (2019). https://doi.org/10.1145/3313276.3316407

  4. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Brief announcement: new bounds for partially synchronous set agreement. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 404–405. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9_40

    Chapter  Google Scholar 

  5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. J. ACM 42(1), 124–142 (1995). https://doi.org/10.1145/200836.200869

    Article  MATH  Google Scholar 

  6. Attiya, H., Castañeda, A.: A non-topological proof for the impossibility of k-set agreement. Theor. Comput. Sci. 512, 41–48 (2013)

    Article  MathSciNet  Google Scholar 

  7. Attiya, H., Paz, A.: Counting-based impossibility proofs for renaming and set agreement. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 356–370. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33651-5_25

    Chapter  Google Scholar 

  8. Biely, M., Robinson, P., Schmid, U.: Weak synchrony models and failure detectors for message passing (k-)set agreement. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 285–299. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10877-8_23

    Chapter  Google Scholar 

  9. Biely, M., Robinson, P., Schmid, U.: Easy impossibility proofs for k-set agreement in message passing systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 299–312. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25873-2_21

    Chapter  Google Scholar 

  10. Bonnet, F., Raynal, M.: On the road to the weakest failure detector for k-set agreement in message-passing systems. Theor. Comput. Sci. 412(33), 4273–4284 (2011). https://doi.org/10.1016/j.tcs.2010.11.007

    Article  MathSciNet  MATH  Google Scholar 

  11. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asynchronous computations. In: STOC 1993: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pp. 91–100. ACM, New York (1993). https://doi.org/10.1145/167088.167119

  12. Bouzid, Z., Travers, C.: \((\text{anti-- }\Omega ^x \times \Sigma _z)\)–based k-set agreement algorithms. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 189–204. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1_16

    Chapter  Google Scholar 

  13. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC 2000. ACM, New York (2000). https://doi.org/10.1145/343477.343502

  14. Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing. Distrib. Comput. 16, 121–163 (2003). https://doi.org/10.1007/s00446-003-0091-y

    Article  Google Scholar 

  15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  Google Scholar 

  16. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002). https://doi.org/10.1145/564585.564601

    Article  Google Scholar 

  17. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Combinatorial Topology. Morgan Kaufmann, Burlington (2013). https://store.elsevier.com/product.jsp?isbn=9780124045781

  18. Herlihy, M., Rajsbaum, S., Raynal, M., Stainer, J.: From wait-free to arbitrary concurrent solo executions in colorless distributed computing. Theor. Comput. Sci. 683, 1–21 (2017). https://doi.org/10.1016/j.tcs.2017.04.007

    Article  MathSciNet  MATH  Google Scholar 

  19. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: An overview of synchronous message-passing and topology. Electron. Notes Theor. Comput. Sci. 39(2), 1–17 (2000). https://doi.org/10.1016/S1571-0661(05)01148-5

    Article  MATH  Google Scholar 

  20. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–923 (1999). https://doi.org/10.1145/331524.331529

    Article  MathSciNet  MATH  Google Scholar 

  21. de Prisco, R., Malkhi, D., Reiter, M.: On k-set consensus problems in asynchronous systems. IEEE Trans. Parallel Distrib. Syst. 12(1), 7–21 (2001). https://doi.org/10.1109/71.899936

    Article  MATH  Google Scholar 

  22. Rincon, H., Winkler, K., Schmid, U., Rajsbaum, S.: A topological view of partitioning arguments: reducing \(k\)-set agreement to consensus. Technical report TUW-281149, TU Wien (2019). https://publik.tuwien.ac.at/files/publik_281149.pdf

  23. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000). https://doi.org/10.1137/S0097539796307698

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schmid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rincon Galeana, H., Winkler, K., Schmid, U., Rajsbaum, S. (2019). A Topological View of Partitioning Arguments: Reducing k-Set Agreement to Consensus. In: Ghaffari, M., Nesterenko, M., Tixeuil, S., Tucci, S., Yamauchi, Y. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2019. Lecture Notes in Computer Science(), vol 11914. Springer, Cham. https://doi.org/10.1007/978-3-030-34992-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34992-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34991-2

  • Online ISBN: 978-3-030-34992-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics