Abstract
We present an unsupervised method for the detection of all temporal segments of videos or motion capture data, that correspond to periodic motions. The proposed method is based on the detection of similar segments (commonalities) in different parts of the input sequence and employs a two-stage approach that operates on the matrix of pairwise distances of all input frames. The quantitative evaluation of the proposed method on three standard ground-truth-annotated datasets (two video datasets, one 3D human motion capture dataset) demonstrate its improved performance in comparison to existing approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afsar, O., Tirnakli, U., Marwan, N.: Recurrence quantification analysis at work: quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease. Sci. Rep. 8(1), 9102 (2018)
Bampis, L., Amanatiadis, A., Gasteratos, A.: Fast loop-closure detection using visual-word-vectors from image sequences. Int. J. Rob. Res. 37(1), 62–82 (2018)
Cutler, R., Davis, L.S.: Robust real-time periodic motion detection, analysis, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 781–796 (2000)
Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Warp: time warping for periodicity detection. In: Fifth IEEE International Conference on Data Mining, 8 pp. IEEE (2005)
Karvounas, G., Oikonomidis, I., Argyros, A.A.: Localizing periodicity in time series and videos. In: BMVC (2016)
Levy, O., Wolf, L.: Live repetition counting. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3020–3028 (2015)
Li, Z., Wang, J., Han, J.: ePeriodicity: mining event periodicity from incomplete observations. IEEE Trans. Knowl. Data Eng. 27(5), 1219–1232 (2015)
Panagiotakis, C., Karvounas, G., Argyros, A.: Unsupervised detection of periodic segments in videos. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 923–927. IEEE (2018)
Panagiotakis, C., Papoutsakis, K., Argyros, A.: A graph-based approach for detecting common actions in motion capture data and videos. Pattern Recogn. 79, 1–11 (2018)
Papoutsakis, K., Panagiotakis, C., Argyros, A.: Temporal action co-segmentation in 3D motion capture data and videos. In: IEEE Conference on COmputer Vision and Pattern Recognition (CVPR) (2017)
Polana, R., Nelson, R.C.: Detection and recognition of periodic, nonrigid motion. Int. J. Comput. Vision 23(3), 261–282 (1997)
Ramasso, E., Panagiotakis, C., Pellerin, D., Rombaut, M.: Human action recognition in videos based on the transferable belief model. Pattern Anal. Appl. 11(1), 1–19 (2008)
Ramasso, E., Placet, V., Boubakar, M.L.: Unsupervised consensus clustering of acoustic emission time-series for robust damage sequence estimation in composites. IEEE Trans. Instrum. Meas. 64(12), 3297–3307 (2015)
Runia, T.F., Snoek, C.G., Smeulders, A.W.: Repetition estimation. arXiv preprint arXiv:1806.06984 (2018)
Tralie, C.J., Perea, J.A.: (quasi) periodicity quantification in video data, using topology. arXiv preprint arXiv:1704.08382 (2017)
Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. IJCV 103(1), 60–79 (2013). https://doi.org/10.1007/s11263-012-0594-8
Wang, P., Abowd, G.D., Rehg, J.M.: Quasi-periodic event analysis for social game retrieval. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 112–119. IEEE (2009)
Acknowledgments
This work was partially supported by the EU project Co4Robots (H2020-731869).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Panagiotakis, C., Argyros, A. (2019). A Two-Stage Approach for Commonality-Based Temporal Localization of Periodic Motions. In: Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A. (eds) Computer Vision Systems. ICVS 2019. Lecture Notes in Computer Science(), vol 11754. Springer, Cham. https://doi.org/10.1007/978-3-030-34995-0_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-34995-0_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34994-3
Online ISBN: 978-3-030-34995-0
eBook Packages: Computer ScienceComputer Science (R0)