Skip to main content

Reference-Free Adaptive Attitude Determination Method Using Low-Cost MARG Sensors

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11754))

Included in the following conference series:

  • 2565 Accesses

Abstract

In this paper, an improved iterative method for attitude determination using microelectromechanical-system (MEMS) Magnetic, Angular Rate, and Gravity (MARG) sensors is proposed. The proposed complementary filter is motivated by several existing algorithms and it decreases the amount of variables for iteration which consequently lowers the convergence time. To enhance the adaptive ability i.e. the performance under external acceleration, of the proposed method, a novel scheme is designed, where the gravity estimation residual is utilized for adaptive tuning of the complementary gain. Experiments are carried out to demonstrate the advantages of the proposed method. The comparisons with representative methods show that the proposed method is more effective, not only in convergence speed, but in dynamic performance under harsh conditions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, Y., Tian, L., Yin, C., Huang, X., Bai, L.: A magnetic domain spots filtering method with self-adapting threshold value selecting for crack detection based on the MOI. Nonlinear Dyn. 86(2), 741–750 (2016)

    Article  Google Scholar 

  2. Tian, Y., Hamel, W.R., Tan, J.: Accurate human navigation using wearable monocular visual and inertial sensors. IEEE Trans. Instrum. Meas. 63(1), 203–213 (2014)

    Article  Google Scholar 

  3. Yang, Z.L., Wu, A., Min, H.Q.: Deployment of wireless sensor networks for oilfield monitoring by multiobjective discrete binary particle swarm optimization. J. Sens. 2016, 1–15 (2016)

    Google Scholar 

  4. Yun, X., Calusdian, J., Bachmann, E.R., McGhee, R.B.: Estimation of human foot motion during normal walking using inertial and magnetic sensor measurements. IEEE Trans. Instrum. Meas. 61(7), 2059–2072 (2012)

    Article  Google Scholar 

  5. Wu, J., Zhou, Z., Chen, J., Fourati, H., Li, R.: Fast complementary filter for attitude estimation using low-cost MARG sensors. IEEE Sens. J. 16(18), 6997–7007 (2016)

    Article  Google Scholar 

  6. Yun, X., Lizarraga, M., Bachmann, E., McGhee, R.: An improved quaternion-based Kalman filter for real-time tracking of rigid body orientation. In: IEEE IROS 2003, vol. 2, October 2003

    Google Scholar 

  7. Leclerc, J.: MEMS for aerospace navigation. IEEE Aerosp. Elect. Syst. Mag. 22(10), 31–36 (2007)

    Article  Google Scholar 

  8. Li, W., Wang, J.: Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems. J. Navig. 66(01), 99–113 (2012)

    Article  Google Scholar 

  9. Marantos, P., Koveos, Y., Kyriakopoulos, K.J.: UAV state estimation using adaptive complementary filters. IEEE Trans. Control Syst. Technol. 50(7), 1573–1582 (2015)

    Google Scholar 

  10. Markley, F.L.: Attitude error representations for Kalman filtering. AIAA J. Guid. Control Dyn. 26(2), 311–317 (2003)

    Article  MathSciNet  Google Scholar 

  11. Fourati, H., Manamanni, N., Afilal, L., Handrich, Y.: Posture and body acceleration tracking by inertial and magnetic sensing: application in behavioral analysis of free-ranging animals. Biomed. Signal Process. Control 6(1), 94–104 (2011)

    Article  Google Scholar 

  12. Fourati, H., Manamanni, N., Afilal, L., Handrich, Y.: A nonlinear filtering approach for the attitude and dynamic body acceleration estimation based on inertial and magnetic sensors: bio-logging application. IEEE Sens. J. 11(1), 233–244 (2011)

    Article  Google Scholar 

  13. Fourati, H.: Heterogeneous data fusion algorithm for pedestrian navigation via foot-mounted inertial measurement unit and complementary filter. IEEE Trans. Instrum. Meas. 64(1), 221–229 (2015)

    Article  Google Scholar 

  14. Makni, A., Fourati, H., Kibangou, A.: Energy-aware adaptive attitude estimation under external acceleration for pedestrian navigation. IEEE/ASME Trans. Mechatron. 21(3), 1366–1375 (2016)

    Article  Google Scholar 

  15. Wu, J., Zhou, Z., Gao, B., Li, R., Cheng, Y., Fourati, H.: Fast linear quaternion attitude estimator using vector observations. IEEE Trans. Auto. Sci. Eng. 15(1), 307–319 (2018)

    Article  Google Scholar 

  16. Kannan, R.: Orientation estimation based on LKF using differential state equation. IEEE Sens. J. 15(11), 6156–6163 (2015)

    Article  Google Scholar 

  17. Euston, M., Coote, P., Mahony, R., Kim, J., Hamel, T.: A complementary filter for attitude estimation of a fixed-wing UAV. In: IEEE IROS 2008, pp. 340–345 (2008)

    Google Scholar 

  18. Sabatini, A.M.: Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans. Biomed. Eng. 53(7), 1346–1356 (2006)

    Article  Google Scholar 

  19. Vasconcelos, J.F., Cardeira, B., Silvestre, C., Oliveira, P., Batista, P.: Discrete-time complementary filters for attitude and position estimation: design, analysis and experimental validation. IEEE Trans. Control Syst. Technol. 19(1), 181–198 (2011)

    Article  Google Scholar 

  20. Yun, X., Bachmann, E.: Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking. IEEE Trans. Robot. 22(6), 1216–1227 (2006)

    Article  Google Scholar 

  21. Higgins, W.: A comparison of complementary and Kalman filtering. IEEE Trans. Aerosp. Elect. Syst. 11(3), 321–325 (1975)

    Article  Google Scholar 

  22. Madgwick, S.O.H., Harrison, A.J.L., Vaidyanathan, R.: Estimation of IMU and MARG orientation using a gradient descent algorithm. In: 2011 IEEE ICRR, pp. 1–7 (2011)

    Google Scholar 

  23. Tian, Y., Wei, H., Tan, J.: An adaptive-gain complementary filter for real-time human motion tracking with MARG sensors in free-living environments. IEEE Trans. Neural Syst. Rehabil. Eng. 21(2), 254–264 (2013)

    Article  Google Scholar 

  24. Fourati, H., Manamanni, N., Afilal, L., Handrich, Y.: Complementary observer for body segments motion capturing by inertial and magnetic sensors. IEEE/ASME Trans. Mechatron. 19(1), 149–157 (2014)

    Article  Google Scholar 

  25. Wu, J., Sun, Y., Wang, M., Liu, M.: Hand-eye calibration: 4D procrustes analysis approach. IEEE Trans. Instrum. Meas. (2019)

    Google Scholar 

  26. Wu, J., Zhou, Z., Fourati, H., Li, R., Liu, M.: Generalized linear quaternion complementary filter for attitude estimation from multi-sensor observations: an optimization approach. IEEE Trans. Auto. Sci. Eng. 16(3), 1–14 (2019)

    Article  Google Scholar 

  27. Yun, X., Bachmann, E.R., McGhee, R.B.: A simplified quaternion-based algorithm for orientation estimation from earth gravity and magnetic field measurements. IEEE Trans. Instrum. Meas. 57(3), 638–650 (2008)

    Article  Google Scholar 

  28. Wu, J., Zhou, Z., Fourati, H., Cheng, Y.: A super fast attitude determination algorithm for consumer-level accelerometer and magnetometer. IEEE Trans. Consum. Elect. 64(3), 375–381 (2018)

    Article  Google Scholar 

  29. Wu, J., Zhou, Z., Song, M., Fourati, H., Liu, M.: Convexity analysis of optimization framework of attitude determination from vector observations. In: 2019 IEEE CODIT, pp. 440–445 (2019)

    Google Scholar 

  30. Wahba, G.: A least squares estimate of satellite attitude. SIAM Rev. 7(3), 409 (1965)

    Article  Google Scholar 

  31. Markley, F.L., Mortari, D.: How to estimate attitude from vector observations. Adv. Astronaut. Sci. 103(PART III), 1979–1996 (2000)

    Google Scholar 

Download references

Acknowledgment

This work was financially supported by Joint Foundation, Ministry of Commerce and GUFE (No. 2016SWBZD04); One Hundred Person Project of the Guizhou Province (No. QKH-PTRC[2016]5675); Plan Project for Guizhou Provincial Science and Technology (No. QKH-PTRC[2018]5803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsen Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, J., Wu, J., Deng, M., Liu, M. (2019). Reference-Free Adaptive Attitude Determination Method Using Low-Cost MARG Sensors. In: Tzovaras, D., Giakoumis, D., Vincze, M., Argyros, A. (eds) Computer Vision Systems. ICVS 2019. Lecture Notes in Computer Science(), vol 11754. Springer, Cham. https://doi.org/10.1007/978-3-030-34995-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34995-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34994-3

  • Online ISBN: 978-3-030-34995-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics