Skip to main content

Mapping Lexical Knowledge to Distributed Models for Ontology Concept Invention

  • Conference paper
  • First Online:
AI*IA 2019 – Advances in Artificial Intelligence (AI*IA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11946))

Abstract

Ontologies are largely used but the abstraction process required to create them is a complex task that leads to incompleteness. Concept invention offers a valid solution to extending ontologies by creating novel and meaningful concepts starting from previous knowledge. The use of distributed vector representations to encode knowledge has become a popular method in both NLP and Knowledge Representation. In this paper, we show how concept invention can be complemented with distributed representation models to perform ontology completion tasks starting from lexical knowledge. We propose a first approach based on a deep neural network trained over distributed representations of words and ontological concept. With this model, we devise a method to generate distributed representations for novel and unseen concepts and we introduce a methodology to evaluate these representations. Experiments show that, despite some limitations, our model provides a promising method for concept invention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://opensource.google.com/projects/lm-benchmark.

  2. 2.

    http://downloads.dbpedia.org/2016-10/core-i18n/en/long_abstracts_en.tql.bz2.

  3. 3.

    http://mappings.dbpedia.org/server/ontology/classes/.

  4. 4.

    https://github.com/NooneBug/Multi_task_concept_invention.

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  2. Bianchi, F., Palmonari, M., Nozza, D.: Towards encoding time in text-based entity embeddings. In: International Semantic Web Conference (2018)

    Google Scholar 

  3. Bianchi, F., Soto, M., Palmonari, M., Cutrona, V.: Type vector representations from text: an empirical analysis. In: DL4KGS@ESWC (2018)

    Google Scholar 

  4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. In: NIPS, pp. 601–608 (2001)

    Google Scholar 

  5. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  6. Bouraoui, Z., Schockaert, S.: Automated rule base completion as Bayesian concept induction. In: AAAI (2019)

    Google Scholar 

  7. Bühmann, L., Lehmann, J., Westphal, P.: DL-Learner: a framework for inductive learning on the semantic web. J. Web Semant. 39, 15–24 (2016)

    Article  Google Scholar 

  8. Caruana, R.: Multitask learning: a knowledge-based source of inductive bias. In: ICML, pp. 41–48. Morgan Kaufmann (1993)

    Google Scholar 

  9. Colton, S., Wiggins, G.A.: Computational creativity: the final frontier? In: ECAI, pp. 21–26 (2012)

    Google Scholar 

  10. Confalonieri, A., et al.: Concept invention: Foundations, Implementation, Social aspects and Applications. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-65602-1

    Book  Google Scholar 

  11. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. JASIS 41(6), 391–407 (1990)

    Article  Google Scholar 

  12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  13. Di Carlo, V., Bianchi, F., Palmonari, M.: Training temporal word embeddings with a compass. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  14. Dumais, S.T.: Latent semantic analysis. Ann. Rev. Inf. Sci. Technol. 38(1), 188–230 (2004)

    Article  Google Scholar 

  15. Eppe, M., et al.: A computational framework for conceptual blending. Artif. Intell. 256, 105–129 (2018)

    Article  MathSciNet  Google Scholar 

  16. Fauconnier, G., Turner, M.: Conceptual integration networks. Cogn. Sci. 22(2), 133–187 (1998)

    Article  Google Scholar 

  17. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. In: Bauer, F.L. (ed.) Linear Algebra, vol. 2, pp. 134–151. Springer, Heidelberg (1971). https://doi.org/10.1007/978-3-662-39778-7_10

    Chapter  Google Scholar 

  18. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser Basel, Basel (2007)

    MATH  Google Scholar 

  19. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)

    Article  Google Scholar 

  20. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: ACL, pp. 539–545. Association for Computational Linguistics (1992)

    Google Scholar 

  21. Jana, A., Mukherjee, A., Goyal, P.: Detecting reliable novel word senses: A network-centric approach. In: SAC, pp. 976–983. ACM, New York (2019)

    Google Scholar 

  22. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010)

    Article  MathSciNet  Google Scholar 

  23. Le, M., Roller, S., Papaxanthos, L., Kiela, D., Nickel, M.: Inferring concept hierarchies from text corpora via hyperbolic embeddings. arXiv preprint arXiv:1902.00913 (2019)

  24. Lenci, A.: Distributional semantics in linguistic and cognitive research. Ital. J. Linguist. 20(1), 1–31 (2008)

    Google Scholar 

  25. Lewis, M., Lawry, J.: Hierarchical conceptual spaces for concept combination. Artif. Intell. 237, 204–227 (2016)

    Article  MathSciNet  Google Scholar 

  26. Lieto, A., Pozzato, G.L.: A description logic of typicality for conceptual combination. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G.A., Raś, Z.W. (eds.) ISMIS 2018. LNCS (LNAI), vol. 11177, pp. 189–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01851-1_19

    Chapter  Google Scholar 

  27. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  28. Nguyen, D.Q., Sirts, K., Qu, L., Johnson, M.: STransE: a novel embedding model of entities and relationships in knowledge bases. In: NAACL, pp. 460–466. The Association for Computational Linguistics (2016)

    Google Scholar 

  29. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: NIPS, pp. 6341–6350 (2017)

    Google Scholar 

  30. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543. ACL (2014)

    Google Scholar 

  31. Peters, M.E., et al.: Deep contextualized word representations. In: NAACL, pp. 2227–2237. ACL (2018)

    Google Scholar 

  32. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  33. Sala, F., Sa, C.D., Gu, A., Ré, C.: Representation tradeoffs for hyperbolic embeddings. ICML 80, 4457–4466 (2018)

    Google Scholar 

  34. Šourek, G., Manandhar, S., Železný, F., Schockaert, S., Kuželka, O.: Learning predictive categories using lifted relational neural networks. In: Cussens, J., Russo, A. (eds.) ILP 2016. LNCS (LNAI), vol. 10326, pp. 108–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63342-8_9

    Chapter  Google Scholar 

  35. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21034-1_9

    Chapter  Google Scholar 

  36. Wang, C., He, X., Zhou, A.: A short survey on taxonomy learning from text corpora: issues, resources and recent advances. In: EMNLP, pp. 1190–1203. Association for Computational Linguistics (2017)

    Google Scholar 

  37. Wiggins, G.A.: Searching for computational creativity. New Gener. Comput. 24(3), 209–222 (2006)

    Article  Google Scholar 

  38. Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: a look back and into the future. ACM Comput. Surv. 44(4), 20:1–20:36 (2012)

    Article  Google Scholar 

  39. Xiao, P., et al.: Conceptual representations for computational concept creation. ACM Comput. Surv. (CSUR) 52(1), 9 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vimercati, M., Bianchi, F., Soto, M., Palmonari, M. (2019). Mapping Lexical Knowledge to Distributed Models for Ontology Concept Invention. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics