Abstract
Modal logics \(\mathsf{K45}\), \(\mathsf{KB4}\), \(\mathsf{KD45}\) and \(\mathsf{S5}\) are of particular interest in knowledge representation, especially in the context of knowledge and belief modelling. Pietruszczak showed that these logics are curious for another reason, namely for the fact that their Kripke-style semantics can be simplified. A simplified frame has the form \(\langle W,A\rangle \), where \(A\subseteq W\). A reachability relation R may be defined as \(R=W\times A\), which, however, makes it superfluous to explicitly refer to it. It is well-known that \(\mathsf{S5}\) is determined by Kripke frames with \(R=W\times W\), i.e., \(A=W\). Pietruszczak showed what classes of simplified frames determine \(\mathsf{K45}\), \(\mathsf{KD45}\), and \(\mathsf{KB4}\). These results were generalized to the extensions of these logics by Segerberg’s formulas. In this paper, we devise sound, complete and terminating prefixed tableau algorithms based on simplified semantics for these logics. Since no separate rules are needed to handle the reachability relation and prefixes do not store any extra information, the calculi are accessible and conceptually simple and the process of countermodel-construction out of an open tableau branch is straightforward. Moreover, we obtain a nice explanation of why these logics are computationally easier than most modal logics, in particular \(\textsc {NP}\)-complete.
Research reported in this paper is supported by the National Science Centre, Poland (grant number: DEC-2017/25/B/HS1/01268).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The assumptions can be read in the following way: A1: John believes in whatever is (logically) true, A2: If John believes that \(\upvarphi \) is true, then he believes that he believes that \(\upvarphi \) is true, A3: If John disbelieves that \(\upvarphi \) is true, then he believes that he disbelieves that \(\upvarphi \) is true. The conclusion can be read as follows: C: John believes that whatever he believes is true.
- 2.
- 3.
Henceforth, we will refer to these rules as common rules.
- 4.
Note that it is an analogous condition to Technique 9.1 from [18], however using it in the framework of simplified tableaux shows explicitly why it does not violate completeness.
References
Baumgartner, P., Fröhlich, P., Furbach, U., Nejdl, W.: Tableaux for diagnosis applications. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 76–90. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0027406
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. No. 53 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2001)
Fitting, M.: A tableau system for propositional S5. Notre Dame J. Formal Logic 18(2), 292–294 (1977). https://doi.org/10.1305/ndjfl/1093887933
Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. No. 169 in Synthese Library. Springer, Dordrecht (1983). https://doi.org/10.1007/978-94-017-2794-5
Fitting, M.: A simple propositional S5 tableau system. Ann. Pure Appl. Logic 96(1), 107–115 (1999)
Gabbay, D.M.: Labelled Deductive Systems. Oxford University Press, Oxford (1996)
Gabbay, D.M., Governatori, G.: Fibred modal tableaux. In: Basin, D., D’Agostino, M., Gabbay, D.M., Matthews, S., Viganò, L. (eds.) Labelled Deduction. Applied Logic Series, vol. 17, pp. 161–191. Springer, Netherlands, Dordrecht (2000). https://doi.org/10.1007/978-94-011-4040-9_7
Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0_6
Governatori, G.: On the relative complexity of labelled modal tableaux. Electron. Notes Theor. Comput. Sci. 78, 40–57 (2003)
Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)
Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, 2–5 June 2006, pp. 57–67. AAAI Press (2006)
Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 448–453. Professional Book Center (2005)
Indrzejczak, A., Zawidzki, M.: Decision procedures for some strong hybrid logics. Logic Log. Philos. 22(4), 389–409 (2013)
Kaminski, M., Schneider, S., Smolka, G.: Terminating tableaux for graded hybrid logic with global modalities and role hierarchies. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 235–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_18
Kaminski, M., Schneider, S., Smolka, G.: Terminating tableaux for graded hybrid logic with global modalities and role hierarchies. Logical Methods Comput. Sci. 7(1), 1–21 (2011)
Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Logic 24(1), 1–14 (1959)
Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94 (1963)
Massacci, F.: Single step tableaux for modal logics. J. Autom. Reason. 24(3), 319–364 (2000)
Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1995)
Papacchini, F.: Minimal model reasoning for modal logic. Ph.D. thesis, University of Manchester (2015)
Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of the 14th International Conference on World Wide Web, pp. 633–640. WWW 2005. ACM, New York (2005)
Perkov, T.: A generalization of modal frame definability. In: Colinet, M., Katrenko, S., Rendsvig, R.K. (eds.) ESSLLI Student Sessions 2013. LNCS, vol. 8607, pp. 142–153. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44116-9_10
Pietruszczak, A.: Simplified Kripke-style semantics for modal logics K45, KB4 and KD45. Bull. Sect. Logic 38(3–4), 163–171 (2009)
Pietruszczak, A., Klonowski, M., Petrukhin, Y., Simplified Kripke-style semantics for some normal modal logics. Studia Logica (2019). https://doi.org/10.1007/s11225-019-09849-2
Priest, G.: An Introduction to Non-Classical Logic: From If to Is. Cambridge Introductions to Philosophy, 2nd edn. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511801174
Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 310–324. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_23
Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Logical Methods Comput. Sci. 7(2) (2011). https://doi.org/10.2168/LMCS-7(2:6)2011
Segerberg, K.K.: An Essay in Classical Modal Logic. Filosofiska Föreningen Och Filosofiska Institutionen Vid Uppsala Universitet, Uppsala (1971)
Takano, M.: A modified subformula property for the modal logics K5 and K5D. Bull. Sect. Logic 30(2), 115–122 (2001)
van Benthem, J.: Modal Logic for Open Minds. CSLI Lecture Notes, vol. 199. CSLI Publications, Stanford (2010)
van Dietmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.): Handbook of Epistemic Logic. College Publications, Milton Keynes (2015)
Viganò, L.: Labelled Non-Classical Logics. Kluwer, Dordrecht (2000)
Zawidzki, M.: Deductive Systems and the Decidability Problem for Hybrid Logics. Łódź University Press/Jagiellonian University Press, Łódź/Kraków (2014)
Acknowledgements
We would like to thank the anonymous reviewers whose comments helped substantially improve this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Petrukhin, Y., Zawidzki, M. (2019). From Simplified Kripke-Style Semantics to Simplified Analytic Tableaux for Some Normal Modal Logics. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-35166-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35165-6
Online ISBN: 978-3-030-35166-3
eBook Packages: Computer ScienceComputer Science (R0)