Skip to main content

From Simplified Kripke-Style Semantics to Simplified Analytic Tableaux for Some Normal Modal Logics

  • Conference paper
  • First Online:
AI*IA 2019 – Advances in Artificial Intelligence (AI*IA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11946))

  • 1316 Accesses

Abstract

Modal logics \(\mathsf{K45}\), \(\mathsf{KB4}\), \(\mathsf{KD45}\) and \(\mathsf{S5}\) are of particular interest in knowledge representation, especially in the context of knowledge and belief modelling. Pietruszczak showed that these logics are curious for another reason, namely for the fact that their Kripke-style semantics can be simplified. A simplified frame has the form \(\langle W,A\rangle \), where \(A\subseteq W\). A reachability relation R may be defined as \(R=W\times A\), which, however, makes it superfluous to explicitly refer to it. It is well-known that \(\mathsf{S5}\) is determined by Kripke frames with \(R=W\times W\), i.e., \(A=W\). Pietruszczak showed what classes of simplified frames determine \(\mathsf{K45}\), \(\mathsf{KD45}\), and \(\mathsf{KB4}\). These results were generalized to the extensions of these logics by Segerberg’s formulas. In this paper, we devise sound, complete and terminating prefixed tableau algorithms based on simplified semantics for these logics. Since no separate rules are needed to handle the reachability relation and prefixes do not store any extra information, the calculi are accessible and conceptually simple and the process of countermodel-construction out of an open tableau branch is straightforward. Moreover, we obtain a nice explanation of why these logics are computationally easier than most modal logics, in particular \(\textsc {NP}\)-complete.

Research reported in this paper is supported by the National Science Centre, Poland (grant number: DEC-2017/25/B/HS1/01268).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The assumptions can be read in the following way: A1: John believes in whatever is (logically) true, A2: If John believes that \(\upvarphi \) is true, then he believes that he believes that \(\upvarphi \) is true, A3: If John disbelieves that \(\upvarphi \) is true, then he believes that he disbelieves that \(\upvarphi \) is true. The conclusion can be read as follows: C: John believes that whatever he believes is true.

  2. 2.

    For a thorough survey of prefixed tableau calculi for various modal logics between \(\mathsf{K}\) and \(\mathsf{S5}\) see, e.g., [8, 18].

  3. 3.

    Henceforth, we will refer to these rules as common rules.

  4. 4.

    Note that it is an analogous condition to Technique 9.1 from [18], however using it in the framework of simplified tableaux shows explicitly why it does not violate completeness.

References

  1. Baumgartner, P., Fröhlich, P., Furbach, U., Nejdl, W.: Tableaux for diagnosis applications. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 76–90. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0027406

    Chapter  MATH  Google Scholar 

  2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. No. 53 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  3. Fitting, M.: A tableau system for propositional S5. Notre Dame J. Formal Logic 18(2), 292–294 (1977). https://doi.org/10.1305/ndjfl/1093887933

    Article  MathSciNet  MATH  Google Scholar 

  4. Fitting, M.: Proof Methods for Modal and Intuitionistic Logic. No. 169 in Synthese Library. Springer, Dordrecht (1983). https://doi.org/10.1007/978-94-017-2794-5

    Book  MATH  Google Scholar 

  5. Fitting, M.: A simple propositional S5 tableau system. Ann. Pure Appl. Logic 96(1), 107–115 (1999)

    Article  MathSciNet  Google Scholar 

  6. Gabbay, D.M.: Labelled Deductive Systems. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  7. Gabbay, D.M., Governatori, G.: Fibred modal tableaux. In: Basin, D., D’Agostino, M., Gabbay, D.M., Matthews, S., Viganò, L. (eds.) Labelled Deduction. Applied Logic Series, vol. 17, pp. 161–191. Springer, Netherlands, Dordrecht (2000). https://doi.org/10.1007/978-94-011-4040-9_7

    Chapter  Google Scholar 

  8. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 297–396. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0_6

    Chapter  MATH  Google Scholar 

  9. Governatori, G.: On the relative complexity of labelled modal tableaux. Electron. Notes Theor. Comput. Sci. 78, 40–57 (2003)

    Article  Google Scholar 

  10. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)

    Article  MathSciNet  Google Scholar 

  11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proceedings, Tenth International Conference on Principles of Knowledge Representation and Reasoning, Lake District of the United Kingdom, 2–5 June 2006, pp. 57–67. AAAI Press (2006)

    Google Scholar 

  12. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 448–453. Professional Book Center (2005)

    Google Scholar 

  13. Indrzejczak, A., Zawidzki, M.: Decision procedures for some strong hybrid logics. Logic Log. Philos. 22(4), 389–409 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Kaminski, M., Schneider, S., Smolka, G.: Terminating tableaux for graded hybrid logic with global modalities and role hierarchies. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 235–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_18

    Chapter  MATH  Google Scholar 

  15. Kaminski, M., Schneider, S., Smolka, G.: Terminating tableaux for graded hybrid logic with global modalities and role hierarchies. Logical Methods Comput. Sci. 7(1), 1–21 (2011)

    Article  MathSciNet  Google Scholar 

  16. Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Logic 24(1), 1–14 (1959)

    Article  MathSciNet  Google Scholar 

  17. Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94 (1963)

    MathSciNet  MATH  Google Scholar 

  18. Massacci, F.: Single step tableaux for modal logics. J. Autom. Reason. 24(3), 319–364 (2000)

    Article  MathSciNet  Google Scholar 

  19. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  20. Papacchini, F.: Minimal model reasoning for modal logic. Ph.D. thesis, University of Manchester (2015)

    Google Scholar 

  21. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of the 14th International Conference on World Wide Web, pp. 633–640. WWW 2005. ACM, New York (2005)

    Google Scholar 

  22. Perkov, T.: A generalization of modal frame definability. In: Colinet, M., Katrenko, S., Rendsvig, R.K. (eds.) ESSLLI Student Sessions 2013. LNCS, vol. 8607, pp. 142–153. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44116-9_10

    Chapter  Google Scholar 

  23. Pietruszczak, A.: Simplified Kripke-style semantics for modal logics K45, KB4 and KD45. Bull. Sect. Logic 38(3–4), 163–171 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Pietruszczak, A., Klonowski, M., Petrukhin, Y., Simplified Kripke-style semantics for some normal modal logics. Studia Logica (2019). https://doi.org/10.1007/s11225-019-09849-2

  25. Priest, G.: An Introduction to Non-Classical Logic: From If to Is. Cambridge Introductions to Philosophy, 2nd edn. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511801174

    Book  MATH  Google Scholar 

  26. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

  27. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 310–324. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_23

    Chapter  MATH  Google Scholar 

  28. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Logical Methods Comput. Sci. 7(2) (2011). https://doi.org/10.2168/LMCS-7(2:6)2011

  29. Segerberg, K.K.: An Essay in Classical Modal Logic. Filosofiska Föreningen Och Filosofiska Institutionen Vid Uppsala Universitet, Uppsala (1971)

    MATH  Google Scholar 

  30. Takano, M.: A modified subformula property for the modal logics K5 and K5D. Bull. Sect. Logic 30(2), 115–122 (2001)

    MathSciNet  MATH  Google Scholar 

  31. van Benthem, J.: Modal Logic for Open Minds. CSLI Lecture Notes, vol. 199. CSLI Publications, Stanford (2010)

    Google Scholar 

  32. van Dietmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.): Handbook of Epistemic Logic. College Publications, Milton Keynes (2015)

    Google Scholar 

  33. Viganò, L.: Labelled Non-Classical Logics. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  34. Zawidzki, M.: Deductive Systems and the Decidability Problem for Hybrid Logics. Łódź University Press/Jagiellonian University Press, Łódź/Kraków (2014)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers whose comments helped substantially improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Zawidzki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petrukhin, Y., Zawidzki, M. (2019). From Simplified Kripke-Style Semantics to Simplified Analytic Tableaux for Some Normal Modal Logics. In: Alviano, M., Greco, G., Scarcello, F. (eds) AI*IA 2019 – Advances in Artificial Intelligence. AI*IA 2019. Lecture Notes in Computer Science(), vol 11946. Springer, Cham. https://doi.org/10.1007/978-3-030-35166-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35166-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35165-6

  • Online ISBN: 978-3-030-35166-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics