Abstract
Designing secure Code-based signature schemes remains an issue today. In this paper, we focus on schemes designed with the Fiat-Shamir transformations rationale (commit and challenge strategy). We propose two generic key recovery attacks on rank metric code-based signature schemes \(\mathsf{Veron}\), \(\mathsf{TPL}\) and \(\mathsf{RQCS}\). More specifically, we exploit the weakness that a support basis or an extended support basis of the secret key could be recovered from the signatures generated in these schemes through different techniques. Furthermore, we are able to determine a support matrix or an extended support matrix for the secret key if the number of equations over the base field is greater than the number of unknown variables in the support matrix. We show that both the design of \(\mathsf{TPL}\) and \(\mathsf{RQCS}\) schemes contain these weaknesses, and no reparation of parameters for these schemes is possible to resist our two attacks. Moreover, we show that we can recover a support basis for the secret key used in \(\mathsf{Veron}\) and that our first attack is successful due to the choice of its proposed parameters. We implement our attacks on \(\mathsf{Veron}\), \(\mathsf{TPL}\) and \(\mathsf{RQCS}\) signature schemes and manage to recover the secret keys within seconds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We first published our attack (Algorithm 4 + 1AS) on \(\mathsf{RQCS}\) signature scheme in [10] on 1 Feb 2019. Xagawa independently published a similar attack on \(\mathsf{RQCS}\) in [18] on 5 Feb 2019. Later on, we have combined our works with Aragon et al.’s work in [2]. We include the attack on \(\mathsf{RQCS}\) in this paper for completeness.
References
Aguilar Melchor, C., et al.: ROLLO - Rank-Ouroboros, LAKE & Locker. https://pqc-rollo.org/doc/rollo-specification_2018-11-30.pdf
Aragon, N., et al.: Cryptanalysis of a rank-based signature with short public keys. Designs, Codes and Cryptography (to appear)
Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank metric based signature scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 728–758. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_25
Bellini, E., Caullery, F., Hasikos, A., Manzano, M., Mateu, V.: Code-based signature schemes from identification protocols in the rank metric. In: Camenisch, J., Papadimitratos, P. (eds.) CANS 2018. LNCS, vol. 11124, pp. 277–298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00434-7_14
Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_6
Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_12
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: New results for rank-based cryptography. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_1
Horlemann-Trautmann, A., Marshall, K., Rosenthal, J.: Extension of Overbeck’s attack for Gabidulin based cryptosystems. Des. Codes Cryptogr. 86(2), 319–340 (2018)
Lau, T.S.C., Tan, C.H.: Key recovery attack on Rank Quasi-Cyclic code-based signature scheme. arXiv preprint:1902.00241. https://arxiv.org/abs/1902.00241
Lau, T.S.C., Tan, C.H., Prabowo, T.F.: Analysis of TPL signature scheme. IACR Cryptology Archive 2019:303. https://eprint.iacr.org/2019/303
Neri, A., Horlemann-Trautmann, A.-L., Randrianarisoa, T., Rosenthal, J.: On the genericity of maximum rank distance and Gabidulin codes. Des. Codes Cryptogr. 86(2), 341–363 (2018)
Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Song, Y., Huang, X., Mu, Y., Wu, W.: A new code-based signature scheme with shorter public key. Cryptology ePrint Archive: Report 2019/053. https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2019/053&version=20190125:204017&file=053.pdf
Tan, C.H., Prabowo, T.F., Lau, T.S.C.: Rank metric code-based signature. In: Proceedings of the International Symposium on Information Theory and Its Application (ISITA 2018), pp. 70–74 (2018)
Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1997)
Xagawa, K.: Cryptanalysis of a new code-based signature scheme with shorter public key in PKC 2019. IACR ePrint:2019/120. https://eprint.iacr.org/2019/120.pdf
Acknowledgement
We are grateful to Caroline Fontaine and the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions which have greatly improved this manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendix
A Proof of Lemma 2.
Lemma 2. Let \(u_1,\ldots ,u_k\) be integers such that \(0<u = \sum _{i=1}^k u_i \le \frac{m}{2}\). For \(1 \le i,j \le k\), let \(U_i\) be a \(u_i\)-dimensional subspace of \(\mathbb {F}_{q^m}\) and \(U_i \cap U_j = \{ 0 \}\). Let \(r_0 \le m-u\), \(w=\sum _{i=1}^k r_i\) and \( v = r_0 + w = \sum _{i=0}^k r_i \), where each \(0 \le r_i \le u_i\) for \(1 \le i \le k\). The number of v-dimensional subspace that intersects each \(U_i\) in an \(r_i\)-dimensional subspace is \(\left( \prod _{i=1}^k \left[ \begin{array}{c} u_i \\ r_i \end{array} \right] _q \right) \left[ \begin{array}{c} m-u \\ r_0 \end{array} \right] _q q^{r_0(u-w)}\).
Proof
We prove the statement by following the idea of the proof of [12, Lemma 3]. For each \(1 \le i \le k\), there are \(\left[ \begin{array}{c} u_i \\ r_i \end{array} \right] _q\) subspaces \(U'_i \subseteq U_i\) of dimension \(r_i\) that can be the intersection space. Now we have to complete the subspace \(\bigoplus _{i=1}^k U'_i\) to a v-dimensional vector space V, intersecting each \(U_i\) only in \(U'_i\). We have \(\sum _{j=1}^{r_0-1} (q^m-q^{u+j})\) choices for the remaining basis vectors. For a fixed basis of \(\bigoplus _{i=1}^k U'_i\), the number of bases spanning the same subspace is given by the number of \(v \times v\) matrices of the form \(\left[ \begin{array}{cc} I_w &{} \varvec{0} \\ A &{} B \\ \end{array}\right] \) where \(A \in \mathbb {F}_q^{r_0 \times w}\) and \(B \in \text {GL}_{r_0} (\mathbb {F}_q)\). This number is equal to \( q^{r_0 w} \left| \text {GL}_{r_0} (\mathbb {F}_q) \right| = q^{r_0 w} \prod _{j=1}^{r_0-1} (q^{r_0} - q^j)\). Hence the final count is given by
\(\square \)
B Proof of Proposition 1.
Proposition 1. Let \(r_x,r_y\) be integers such that \(r_x + r_y \le \min \{ m,n \}\) and \(\varvec{x} \in \mathcal {E}_{m,n, r_x}\). Randomly pick a vector \(\varvec{y} \overset{\$}{\leftarrow }\mathcal {E}_{m,n,r_y}\) and form \(\varvec{z}=\varvec{x}+\varvec{y}\). Suppose that \(\mathsf{Supp}(\varvec{x}) \cap \mathsf{Supp}(\varvec{y}) = \{ 0 \}\), then the probability that \(\text {rk}(\varvec{z}) = r_x + r_y\) is \(\left[ \begin{array}{c} n-r_x \\ r_y \end{array} \right] _q q^{r_yr_x} \left( \left[ \begin{array}{c} n \\ r_y \end{array} \right] _q \right) ^{-1}\).
Proof
By Lemma 1, we can rewrite \(\varvec{x} = (\hat{x}_1,\ldots ,\hat{x}_{r_x}) A\) and \(\varvec{y} = (\hat{y}_1,\ldots ,\hat{y}_{r_y}) B\) where \(\text {rk}(\hat{x}_1,\ldots ,\hat{x}_{r_x}) = r_x\) and \(\text {rk}(\hat{y}_1,\ldots ,\hat{y}_{r_y}) = r_y\). Then
Since \(\mathsf{Supp}(\varvec{x}) \cap \mathsf{Supp}(\varvec{y}) = \{ 0 \}\), we have \(\text {rk}(\hat{x}_1,\ldots ,\hat{x}_{r_x},\hat{y}_1,\ldots ,\hat{y}_{r_y}) = r_x + r_y\). Let \(W = \left[ \begin{array}{c} A \\ B \end{array} \right] \). If \(\text {rk}(W) = r_x + r_y\), then \(\text {rk}(\varvec{z}) = r_x + r_y\). Hence, we need to calculate the probability that \(\text {rk}(W) = r_x + r_y\). Let \(\mathcal {A} \subset \mathbb {F}_{q^n}\) with \(\dim (\mathcal {A}) = r_x\) and \(\mathcal {B} \subset \mathbb {F}_{q^n}\) with \(\dim (\mathcal {B}) = r_y\), where each of them is the vector subspace generated by the row space of A and B respectively. If \(\mathcal {A} \cap \mathcal {B} = \{ 0 \}\), then each row of W is linearly independent with each other, giving us \(\text {rk}(W)=r_x+r_y\). By Lemma 2, the number of \(\mathcal {B}\) such that \(\mathcal {A} \cap \mathcal {B} = \{0 \}\) is \( \left[ \begin{array}{c} n-r_x \\ r_y \end{array} \right] _q q^{r_yr_x}\). So, the probability that \(\mathcal {A} \cap \mathcal {B} = \{0 \}\) is \(\left[ \begin{array}{c} n-r_x \\ r_y \end{array} \right] _q q^{r_yr_x} \left( \left[ \begin{array}{c} n \\ r_y \end{array} \right] _q \right) ^{-1}\). Therefore, the probability that \(\text {rk}(\varvec{z}) = r_x + r_y\) is equal to the probability that \(\text {rk}(W) = r_x+r_y\), which equals to \(\left[ \begin{array}{c} n-r_x \\ r_y \end{array} \right] _q q^{r_yr_x} \left( \left[ \begin{array}{c} n \\ r_y \end{array} \right] _q \right) ^{-1}\). \(\square \)
C Proof of Theorem 1.
Theorem 1. Let \(r_x,r_y\) be integers such that \(r_x + r_y \le \min \{ m,n \}\) and \(\varvec{x} \in \mathcal {E}_{m,n, r_x}\). The probability that the vector \(\varvec{z}=\varvec{x}+\varvec{y}\) has rank \(\text {rk}(\varvec{z}) = r_x + r_y\) for a random \(\varvec{y} \overset{\$}{\leftarrow }\mathcal {E}_{m,n,r_y}\) is \(\left[ \begin{array}{c} m-r_x \\ r_y \end{array} \right] _q \left[ \begin{array}{c} n-r_x \\ r_y \end{array} \right] _q q^{2r_yr_x} \left( \left[ \begin{array}{c} m \\ r_y \end{array} \right] _q \left[ \begin{array}{c} n \\ r_y \end{array} \right] _q \right) ^{-1}\).
Proof
By Lemma 2, the number of \(\varvec{y}\) such that \(\mathsf{Supp}(\varvec{x}) \cap \mathsf{Supp}(\varvec{x}) = \{ 0 \}\) is \(\left[ \begin{array}{c} m-r_x \\ r_y \end{array} \right] _q q^{r_yr_x} \). Thus, the probability that \(\mathsf{Supp}(\varvec{x}) \cap \mathsf{Supp}(\varvec{x}) = \{ 0 \}\) is \(\left[ \begin{array}{c} m-r_x \\ r_y \end{array} \right] _q q^{r_yr_x} \left( \left[ \begin{array}{c} m \\ r_y \end{array} \right] _q \right) ^{-1}\). Combining this with the result from Proposition 1, the probability that \(\text {rk}(\varvec{z}) = r_x + r_y\) for a random \(\varvec{y} \overset{\$}{\leftarrow }\mathcal {E}_{m,n,r_y}\) is
\(\square \)
D Proof of Proposition 2.
Proposition 2. Let \(r_x,r_y\) be integers such that \(r_x + r_y \le \min \{ m,n \}\), \(\varvec{x} \in \mathcal {E}_{m,n, r_x}\), \(\varvec{y} \in \mathcal {E}_{m,n,r_y}\) and \(\varvec{z} = \varvec{x}+\varvec{y}\) with \(\text {rk}(\varvec{z}) = r_x + r_y\). Then \(\mathsf{Supp}(\varvec{x}) \subset \mathsf{Supp}(\varvec{z})\).
Proof
By Lemma 1, we can rewrite \(\varvec{x} = (\hat{x}_1,\ldots ,\hat{x}_{r_x}) A\) and \(\varvec{y} = (\hat{y}_1,\ldots ,\hat{y}_{r_y}) B\) where \(\text {rk}(\hat{x}_1,\ldots ,\hat{x}_{r_x}) = r_x\) and \(\text {rk}(\hat{y}_1,\ldots ,\hat{y}_{r_y}) = r_y\). Then
Similarly, since \(\text {rk}(\varvec{z}) = r_x + r_y\), we can rewrite
where \(\text {rk}(\hat{z}) = r_x + r_y\) and \(\text {rk}(Z) = r_x + r_y\). Equating (1)\(=\)(2), we have
which implies that \(\langle \hat{x}_1,\ldots ,\hat{x}_{r_x},\hat{y}_1,\ldots ,\hat{y}_{r_y} \rangle = \langle \hat{z}_1,\ldots ,\hat{z}_{r_x+r_y} \rangle \) and

\(\square \)
E Proof of Proposition 3.
Proposition 3. Let \(\varvec{x} \in \mathcal {E}_{m,n,r}\) and \(t > r\) be an integer. There exists a vector \(\varvec{y} = ( y_1,\ldots ,y_t) \in \mathcal {E}_{m,t,t}\) such that \(\mathsf{Supp}(\varvec{x}) \subset \mathsf{Supp}(\varvec{y})\). We call such \(\mathsf{Supp}(\varvec{y})\) an extended support of \(\varvec{x}\) and \(\{ y_1,\ldots ,y_t \}\) an extended support basis for \(\varvec{x}\). Moreover, there exists a matrix \(V \in \mathbb {F}_q^{t \times n}\) of \(\text {rk}(V) = r\) satisfying \(\varvec{x} = (y_1,\ldots ,y_t)V\). We call such V an extended support matrix for \(\varvec{x}\).
Proof
Since \(\varvec{x} \in \mathcal {E}_{m,n,r}\), by Lemma 1, there exists a vector \(\varvec{\hat{x}} = (\hat{x}_1,\ldots ,\hat{x}_r) \in \mathcal {E}_{m,r,r}\) and a matrix \(U \in \mathbb {F}_q^{r \times n}\) with \(\text {rk}(U) = r\) such that \(\varvec{x} = \varvec{\hat{x}}U\). Let \(r' = t-r\), randomly pick \(r'\) independent elements \(w_1,\ldots ,w_{r'} \in \mathbb {F}_{q^m} \setminus \mathsf{Supp}(\varvec{x})\), such that \(\text {rk}(\hat{x}_1,\ldots ,\hat{x}_r,w_1,\ldots ,w_{r'}) = t\). Then we can rewrite the vector \(\varvec{x} = \varvec{\hat{x}} U = (\hat{x}_1,\ldots ,\hat{x}_r,w_1,\ldots ,w_{r'}) \left[ \begin{array}{c} U \\ \varvec{0}_{r' \times n} \end{array} \right] \). Finally, let \(P \in \text {GL}_t (\mathbb {F}_q)\) and \(\varvec{\hat{y}}=(\hat{x}_1,\ldots ,\hat{x}_r,w_1,\ldots ,w_{r'})\). Then there exists a vector \(\varvec{y} = \varvec{\hat{y}}P\) and a matrix \(V=P^{-1} \left[ \begin{array}{c} U \\ \varvec{0}_{r' \times n} \end{array} \right] \) of \(\text {rk}(V) = r\) such that \(\varvec{x} = \varvec{y}V\). \(\square \)
F Rank Support Recovery Algorithm
Let \(f=(f_1,\ldots ,f_d) \in \mathcal {E}_{m,d,d}\), \(e=(e_1,\ldots ,e_r) \in \mathcal {E}_{m,r,r}\) and \(\varvec{s}=(s_1,\ldots ,s_n) \in \mathbb {F}_{q^m}^n\) such that \(S:=\langle s_1,\ldots ,s_n \rangle = \langle f_1 e_1,\ldots ,f_d e_r \rangle \). Given \(\varvec{f}\), \(\varvec{s}\) and r as input, the Rank Support Recover Algorithm will output a vector space E which satisfies \(E = \langle e_1,\ldots ,e_r \rangle \). Denote \(S_i := f_i^{-1}.S\) and \(S_{ i,j} := S_i \cap S_j\).

Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Lau, T.S.C., Tan, C.H., Prabowo, T.F. (2019). Key Recovery Attacks on Some Rank Metric Code-Based Signatures. In: Albrecht, M. (eds) Cryptography and Coding. IMACC 2019. Lecture Notes in Computer Science(), vol 11929. Springer, Cham. https://doi.org/10.1007/978-3-030-35199-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-35199-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35198-4
Online ISBN: 978-3-030-35199-1
eBook Packages: Computer ScienceComputer Science (R0)