Abstract
In ASIACRYPT 2016, Bellare, Fuchsbauer and Scafuro studied security of non-interactive zero-knowledge (NIZK) arguments in the face of parameter subversion. They showed that achieving subversion soundness (soundness without trusting to the third party) and standard zero-knowledge is impossible at the same time. On the positive side, in the best case, they showed that one can achieve subversion zero-knowledge (zero-knowledge without trusting to the third party) and soundness at the same time. In this paper, we show that one can amplify their best positive result and construct NIZK arguments that can achieve subversion zero-knowledge and simulation (knowledge) soundness at the same time. Simulation (knowledge) soundness is a stronger notion in comparison with (knowledge) soundness, as it also guarantees non-malleability of proofs. Such stronger security guarantee is a must in practical systems. To prove the result, we show that given a NIZK argument that achieves Sub-ZK and (knowledge) soundness, one can use an OR-based construction to define a new language and build a NIZK argument that will guarantee Sub-ZK and simulation (knowledge) soundness at the same time. We instantiate the construction with the state-of-the-art zk-SNARK proposed by Groth [Eurocrypt 2016] and obtain an efficient SNARK that guarantees Sub-ZK and simulation knowledge soundness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A framework with practically optimized primitives which given a sound NIZK lifts it to a universally composable or more precisely a black-box simulation extractable NIZK argument [KZM+15].
- 2.
It states that in an asymetric bilinear group, given \(\left[ 1\right] _{1}\) and \(\left[ 1\right] _{1}\), if an adversary manages to come out with \(\left[ a\right] _{1}\) and \(\left[ a\right] _{2}\), he must know a. Knowing a is formalized by showing that there exists an efficient non-black-box extractor that given access to source code and random coins of the adversary, it can extract a [Dam92].
- 3.
It states that in a symmetric bilinear group, given \(\left[ 1\right] _{1}\), if an adversary manages to come out with \(\left[ a\right] _{1}\) and \(\left[ a^2\right] _{1}\), he must know a.
References
Atapoor, S., Baghery, K.: Simulation extractability in groth’s zk-SNARK. In: Pérez-Solá, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J. (eds.) DPM/CBT-2019. LNCS, vol. 11737, pp. 336–354. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31500-9_22
Auerbach, B., Bellare, M., Kiltz, E.: Public-key encryption resistant to parameter subversion and its realization from efficiently-embeddable groups. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 348–377. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_12
Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zając, M.: UC-secure CRS generation for SNARKs. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 99–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_6
Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_1
Abdolmaleki, B., Lipmaa, H., Siim, J. and Zajac, M.: On QA-NIZK in the BPK model. IACR Cryptology ePrint Archive, 2018:877 (2018). http://eprint.iacr.org/2018/877
Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signatures: definitions, constructions and applications. Cryptology ePrint Archive, Report 2015/517 (2015). http://eprint.iacr.org/2015/517
Baghery, K.: On the efficiency of privacy-preserving smart contract systems. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 118–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_7
Baghery, K.: Subversion-resistant commitment schemes: definitions and constructions. Cryptology ePrint Archive, Report 2019/1065 (2019). http://eprint.iacr.org/2019/1065
Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)
Ball, J., Borger, J., Greenwald, G., et al.: Revealed: how us and uk spy agencies defeat internet privacy and security. The Guardian 6, 2–8 (2013)
Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium on Security and Privacy, pp. 287–304. IEEE Computer Society Press (2015)
Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 505–514. ACM Press, May/June 2014
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive arguments for a von neumann architecture. Cryptology ePrint Archive, Report 2013/879 (2013). http://eprint.iacr.org/2013/879
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May 1988
Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_26
Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message authentication based on non-interactive zero knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_19
Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_1
Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36
De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33
Fuchsbauer, G., Orrù, M.: Non-interactive zaps of knowledge. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 44–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_3
Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_11
Gabizon, A.: On the security of the BCTV pinocchio zk-SNARK variant. IACR Cryptology ePrint Archive, 2019:119 (2019)
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Groth, J., Maller, M.: Snarky Signatures: minimal signatures of knowledge from simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_20
Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6
Greenwald, G.: No Place to Hide: Edward Snowden, the NSA, and the US Surveillance State. Macmillan, London (2014)
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19
Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11
Haenni, R.: Swiss post public intrusion test: undetectable attack against vote integrity and secrecy (2019). https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
Kosba, A., Miller, A.: The blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy, pp. 839–858. IEEE Computer Society Press, May 2016
Kosba, A.E., et al.: A framework for building composable zero-knowledge proofs. Technical report 2015/1093, 10 November 2015. http://eprint.iacr.org/2015/1093. Accessed 9 Apr 2017
Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10
Lipmaa, H.: Simulation-extractable SNARKs revisited. Cryptology ePrint Archive, Report 2019/612 (2019). http://eprint.iacr.org/2019/612
Lewis, S.J., Pereira, O., Teague, V.: Trapdoor commitments in the swisspost e-voting shuffle proof (2019). https://people.eng.unimelb.edu.au/vjteague/SwissVote
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society Press, May 2013
Perlroth, N., Larson, J., Shane, S.: NSA able to foil basic safeguards of privacy on web. The New York Times, 5 (2013)
Acknowledgement
This work was supported in part by the Estonian Research Council grant PRG49.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Baghery, K. (2019). Subversion-Resistant Simulation (Knowledge) Sound NIZKs. In: Albrecht, M. (eds) Cryptography and Coding. IMACC 2019. Lecture Notes in Computer Science(), vol 11929. Springer, Cham. https://doi.org/10.1007/978-3-030-35199-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-35199-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35198-4
Online ISBN: 978-3-030-35199-1
eBook Packages: Computer ScienceComputer Science (R0)