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Abstract

Large probabilistic models are often shaped by a pool of
known individuals (a universe) and relations between them.
Lifted inference algorithms handle sets of known individuals
for tractable inference. Universes may not always be known,
though, or may only described by assumptions such as “small
universes are more likely”. Without a universe, inference is no
longer possible for lifted algorithms, losing their advantage
of tractable inference. The aim of this paper is to define a se-
mantics for models with unknown universes decoupled from
a specific constraint language to enable lifted and thereby,
tractable inference.

Introduction
At the heart of many machine learning algorithms lie large
probabilistic models that use random variables (randvars)
to describe behaviour or structure hidden in data. After a
surge in effective machine learning algorithms, efficient al-
gorithms for inference come into focus to make use of the
models learned or to optimise machine learning algorithms
further (LeCun 2018). Often, a model is shaped by a pool
of known individuals (constants), i.e., a known universe, and
relations between them. Handling sets of individuals enables
tractable inference (Niepert and Van den Broeck 2014).

Lifting efficiently handles sets of individuals by working
with representatives of individuals behaving identically and
only looking at specific individuals if necessary. If mod-
elling, e.g., a possible epidemic depending on how many
people are sick, all people being sick behave identically to-
wards an epidemic. In parametric factors (parfactors), rand-
vars parameterised with logical variables (logvars) com-
pactly represent sets of randvars (Poole 2003). Instead of
specifying a factor for each person about how the person
being sick affects an epidemic, one parfactor works as a
template for all people. Markov logic networks use first-
order logic formulas for compact encoding (Richardson and
Domingos 2006). A known universe means that logvars in
parfactors or Markov logic networks have a domain and pos-
sibly a constraint restricting domains to certain constants for
specific parfactors or formulas. Lifted inference algorithms

∗Paper accepted at AI-19 (Braun and Möller 2019)
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such as (i) lifted variable elimination (LVE) (Poole 2003;
Taghipour et al. 2013), (ii) the lifted junction tree algorithm
(Braun and Möller 2017), (iii) first-order knowledge compi-
lation (Van den Broeck et al. 2011), (iv) probabilistic theo-
rem proving (Gogate and Domingos 2011), or (v) lifted be-
lief propagation (Ahmadi et al. 2013), use domains or con-
straints to determine the number of individuals represented
to be able to perform efficient inference.

The question is what to do if the universe is unknown,
which makes logvar domains unspecified and constraints
empty or not applicable. In the example about an epidemic,
the people who are possibly sick are not known. The ques-
tion is not entirely new and an interesting one for diverse
research areas: Ceylan et al. define a semantics for open-
world probabilistic databases, keeping a fixed upper bound
on domains (Ceylan, Darwiche, and Van den Broeck 2016).
Srivastava et al. specify first-order open-universe partially
observable Markov decision processes to generate strategies
based on sampling (Srivastava et al. 2014). Milch et al. study
unknown domains in Bayesian Logic, using sampling for ap-
proximate inference (Milch et al. 2005). But, the effects of
unknown finite universes on lifted inference and how to treat
unknown universes in lifting have not been discussed.

Therefore, this paper explores lifted inference given mod-
els with unknown universes by defining semantics decou-
pled from a specific constraint language to again enable
tractable inference with lifted algorithms. Decoupling the
semantics from the constraint language allows for exploring
unknown universes unrestricted by the expressiveness of a
specific constraint language. The semantics is based on con-
straints over constraints and a set of possible domains, re-
sulting in a variety of interesting new queries that allow for
exploring unknown universes as well as checking assump-
tions about models. Additionally, we discuss specifying a
distribution over domains, similar to (Milch et al. 2005).
Although the idea behind our approach applies to any for-
malism and lifted algorithm, we consider parfactors together
with LVE since LVE has also been decoupled from the con-
straint language (Taghipour et al. 2013).

The remainder of this paper starts with providing nota-
tions and recapping LVE. Then, we discuss constraints and
domains from a generative viewpoint and define semantics.
Finally, we look at query answering for such models.
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Preliminaries
This section specifies notations and recaps LVE. A running
example models the interplay of an epidemic and people be-
ing sick, travelling, and being treated. Travels spread a dis-
ease, making an epidemic more likely. Treatments combat a
disease, making an epidemic less likely. The example shows
a scenario where one is interested in transferring a model to
varying domains.

Parameterised Models
Parameterised models are the enclosing formalism for par-
factors. A parfactor describes a function, mapping argument
values to real values (potentials). Parameterised randvars
(PRVs) constitute arguments, compactly encoding patterns,
i.e., the function is identical for all groundings. Definitions
are based on (Taghipour et al. 2013).

Definition 1. Let R be a set of randvar names, L a set of log-
var names, Φ a set of factor names, and D a set of constants
(universe). All sets are finite. Each logvar L has a domain
D(L) ⊆ D. A constraint is a tuple (X , CX) of a sequence
of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi).
The symbol > for C marks that no restrictions apply, i.e.,
CX = ×n

i=1D(Xi).
A PRV R(L1, . . . , Ln), n ≥ 0 consists of a randvar R ∈

R possibly combined with logvars L1, . . . , Ln ∈ L. If n =
0, the PRV is parameterless and constitutes a propositional
randvar. The termR(A) denotes the possible values (range)
of a PRV A. An event A = a denotes the occurrence of
PRV A with range value a ∈ R(A). We denote a parfactor
g by φ(A)|C with A = (A1, . . . , An) a sequence of PRVs,
φ : ×n

i=1R(Ai) 7→ R+ a function with name φ ∈ Φ, and C
a constraint on the logvars ofA. A PRVA or logvar L under
constraint C is given by A|C or L|C , respectively. We may
omit |> in A|>, L|>, or φ(A)|>. A set of parfactors forms a
model G := {gi}ni=1.

The term lv(P ) refers to the logvars in P , which may be
a PRV, a constraint, a parfactor, or a model. The term gr(P )
denotes the set of all instances of P w.r.t. given constraints.
An instance is an instantiation (grounding) of P , substitut-
ing the logvars in P with a set of constants from given con-
straints. If P is a constraint, gr(P ) refers to the second com-
ponent CX. The universe is given by D, and the constraints
encode which parfactors apply to which constants.

Let us specify a model Gex for the epidemic example.
The sets of names are R = {Epid, Sick, Travel, T reat},
L = {X,T}, and Φ = {φ0, φ1, φ2}. The set of constants
D contains constants alice, bob, eve and serum1, serum2,
which form the domains D(X) = {alice, bob, eve} and
D(T ) = {serum1, serum2}. We build the boolean
PRVs Epid, Sick(X), T ravel(X), T reat(X,T ) from R
and L. Epid holds if an epidemic occurs. Sick(X)
holds if a person X is sick, Travel(X) holds if
X travels, and Treat(X,T ) holds if X is treated
with T . With a constraint C = (X, {eve, bob}),
gr(Sick(X)|C) = {Sick(eve), Sick(bob)}. With a > con-
straint, gr(Sick(X)|>) contains Sick(alice) as well. The

Epid g0

Sick(X)
Travel(X) Treat(X,T )

g1 g2

Figure 1: Parfactor graph for Gex

model is given by Gex = {gi}2i=0,

g0 =φ0(Epid), (1)
g1 =φ1(Epid, Sick(X), T ravel(X))|C1

, (2)

C1 = > = D(X),

g2 =φ2(Epid, Sick(X), T reat(X,T ))|C2
, (3)

C2 = > = D(X)×D(T ).

Parfactors g1 and g2 have eight input-output pairs, g0 has
two (omitted here). Constraints are >, meaning, the φ’s ap-
ply to all possible groundings of the argument PRVs, e.g.,
gr(g1) contains three factors, one for alice, bob, eve each,
with identical φ1. Figure 1 depicts Gex as a graph with four
variable nodes for the PRVs and three factor nodes for the
parfactors with edges to arguments.

The semantics of a model G is given by grounding and
building a full joint distribution PG. Query answering refers
to computing probability distributions, which boils down to
computing marginals on PG. A formal definition follows.
Definition 2. With Z as normalising constant, a model G
represents the full joint distribution PG = 1

Z

∏
f∈gr(G) f

(distribution semantics). The term P (Q|E) denotes a query
in G with Q a set of grounded PRVs and E a set of events.

An example query for Gex is P (Epid|Sick(eve) =
true), asking for the conditional distribution of Epid given
the event Sick(eve) = true. Lifted query answering algo-
rithms like LVE seek to avoid grounding and building PG.

Lifted Variable Elimination: An Example
LVE answers queries of the form in Definition 2 by elimi-
nating all PRVs that do not occur in a query. We use LVE as
a means to illustrate how known universes are required for
calculations. The exact workings of LVE are not necessary
for understanding the contributions of this paper.

When eliminating a PRV, LVE in essence computes vari-
able elimination for a representative and exponentiates the
result for indistinguishable instances (lifted summing out).
While the main idea is rather straightforward, a correct im-
plementation is more involved. See (Taghipour et al. 2013)
for details on LVE for models of Definition 1.

To illustrate the effects of a universe, con-
sider a query P (Epid) in model Gex. LVE elim-
inates the PRVs Treat(X,T ), Travel(X), and
Sick(X). To eliminate Treat(X,T ) from parfactor
g2 = φ2(Epid, Sick(X), T reat(X,T ))|>, LVE looks
at the constraint of g2, which is >, i.e., D(X) × D(T ).
Eliminating Treat(X,T ) leaves X as the only logvar
in g2. As such, there must exist the same number of T
constants given each X constant for lifted summing out
to apply. For each X , there exist two T constants, i.e.,



serum1 and serum2. Thus, LVE is able to eliminate
Treat(X,T ) by summing out Treat(X,T ) from φ2 using
propositional variable elimination, leading to a parfactor
g′2 = φ′2(Epid, Sick(X))|>, and then taking each potential
in g′2 to the power of 2, leading to g′′2 . The> constraint in g′′2
only refers to the domain of X . (On the propositional level,
two Treat randvars are eliminated from two φ2 factors for
each X constant and then multiplied.)

Next, LVE eliminates Travel(X) from parfactor g1,
which leads to a parfactor g′1 = φ′1(Epid, Sick(X))|>,
where each potential is taken to the power of 1 as eliminating
Travel(X) does not eliminate a logvar (afterwardsX is still
part of g′1). For eliminating Sick(X), LVE multiplies g′1 and
g′′2 into g12 = φ12(Epid, Sick(X))|>, sums out Sick(X)
from g12 as in propositional variable elimination. Summing
out Sick(X) eliminates X as well, which requires the po-
tentials after summing out to be taken to the power of 3 for
the three constants alice, bob, eve in the domain of X . The
result is then a parfactor withEpid as argument, which LVE
multiplies with g0. The result is a parfactor that contains the
queried probability distribution after normalisation.

To determine exponents for sum-out operations, con-
straints based on a universe are necessary. Other lifted al-
gorithms need a universe similar to LVE. E.g., first-order
knowledge compilation builds a tree-like helper structure
for efficient answering of multiple queries, which contains
nodes that represent isomorphic subtrees and requires the
number of subtrees represented during calculations (Van
den Broeck et al. 2011). The lifted junction tree algorithm
builds another form of helper structure for efficiently an-
swering multiple queries using LVE as a subroutine (Braun
and Möller 2017).

Models with Unknown Universes
This section focusses on models with unknown universes.
Constraints over constraints describe possible universes, de-
coupled from a specific constraint language. Based on do-
main and constraint descriptions, we define semantics.

Template Models
Parameterised models contain constraints that restrict log-
vars in a parfactor to constants from a known universe. With-
out a known universe, the set of constants D becomes empty.
As a consequence, logvar domains are empty as the domains
are defined as subsets of D. In turn, constraints are no longer
defined since they are combinations of subsets of domains.
Last, semantics lose its meaning as it involves grounding a
model, which is not possible without constraints.

We assume, though, that the model itself accurately de-
scribes relations. Thus, a parameterised model without D
and empty constraints becomes a template model that spec-
ifies local distributions for unknown instances of PRVs.

Definition 3. A template model G is a set of parfactors
{g̃i}ni=1, in which each g̃i = φi(Ai)|C has an empty con-
straint C = (X , CX ) with CX = ⊥.

Replacing the constraint in g1 with ((X),⊥) and in
g2 with ((X,T ),⊥) in Gex, template model Gex={g̃i}2i=0

arises. Gex no longer refers to a specific universe, allowing
for using varying numbers of people of treatments.

Worlds of Constraints
With an unknown universe, we implicitly specify constraints
through a set of rules that generate tuples for constraints
given a specific domain at a later point. Constraints over
constraints enables us to describe how universes arise in-
dependent of specific constants. To model constraints, one
could use, e.g., answer set programming (Brewka, Eiter,
and Truszczynski 2011), probabilistic Datalog (Fuhr 1995),
ProbLog (De Raedt, Kimmig, and Toivonen 2007), or
Bayesian Logic (Milch et al. 2005), with the latter three
leading to probabilities associated with constraints.

Definition 4. Given a template model G and a domain setD
for lv(G), a constraint program C returns a ordered set of
constraint sets C = {{Cj,i}ni=1}mj=1, i.e., C generates a con-
straint for each parfactor in G. We call each generated con-
straint set {Cj,i}ni=1 a constraint world CWj . If C assigns a
probability distribution over all CWj , C returns an ordered
set of tuples C = {({Cj,i}ni=1, pj)}mj=1 of constraint sets
and corresponding probabilities, forming a distribution over
constraint worlds. Instantiating G with CWj , i.e., replacing
empty constraints with the constraints in CWj , yields a pa-
rameterised model G|CWj

.

Let us look at possible constraint programs to illustrate
how constraint worlds arise. The shorthand > already de-
fines a constraint program C> that generates tuples by build-
ing Cartesian products given domains. C> generates exactly
one constraint world. Given Gex, C> returns {{C1, C2}}
if D contains the domains D(X) = {alice, bob, eve} and
D(T ) = {serum1, serum2}. For a more complex example,
assume that there are three treatments t1, t2, t3 with only two
treatments applicable at a time, i.e.,D(T ) = {t1, t2, t3} and
D(X) unknown. Each combination has a different probabil-
ity, e.g., 0.7 for (t1, t2), 0.2 for (t2, t3), and 0.1 for (t1, t3).
A probabilistic Datalog program captures this setup as fol-
lows:

element of C2(X,Y1) :- linked(X,Y1,Y2).
element of C2(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance of X(X)

& pair(Y1,Y2).
0.7 pair(t1,t2).
0.2 pair(t2,t3).
0.1 pair(t1,t3).

The first three lines denote rules according to which one
can generate (X,T )-tuples. The last line denotes probabilis-
tic facts that are disjoint, with probabilities adding up to 1, to
model the combination of treatments. If given a domain such
{alice, bob, eve} for X , one can add corresponding facts to
the program:

instance of X(alice).
instance of X(bob).
instance of X(eve).

Asking the queries ?- element of C2(X,Y) and ?-
instance of X(X) generates tuples for the constraints



in Gex. Using 0.7 pair(t1, t2), the program returns
the following facts, which contain tuples for the constraints
in Gex:

instance of X(alice).
instance of X(bob).
instance of X(eve).
0.7 element of C2(alice,t1).
0.7 element of C2(alice,t2).
0.7 element of C2(bob,t1).
0.7 element of C2(bob,t2).
0.7 element of C2(eve,t1).
0.7 element of C2(eve,t2).

The Datalog program as constraint program CDL returns
three constraint worlds {({Cj,i}2i=1, pj}3j=1 with p1 = 0.7,
p2 = 0.2, and p3 = 0.1 and constraints

C1,1 = C2,1 = C3,1 = ((X), {(alice), (bob), (eve)})
C1,2 = ((X,T ), {(alice, t1), (alice, t2), (bob, t1),

(bob, t2), (eve, t1), (eve, t2)})
C2,2 = ((X,T ), {(alice, t2), (alice, t3), (bob, t2),

(bob, t3), (eve, t2), (eve, t3)})
C3,2 = ((X,T ), {(alice, t1), (alice, t3), (bob, t1),

(bob, t3), (eve, t1), (eve, t3)})

A set of constraint worlds yields a set of parameterised
models, which inherits the distribution over the set of con-
straint worlds if existing.

Proposition 1. Let a constraint program C generate a
set of constraint worlds {(CWj , pj)}mj=1. Instantiating a
template model G with each constraint world CWj ∈
{(CWj , pj)}mj=1 leads to a distribution over the ordered set
of parameterised models {(G|CWj

, pj)}mj=1. If C does not
generate probabilities, the implicit distribution is a uniform
distribution with ∀j : pj = 1

m .

Proposition 1 relies on CW being valid for G, meaning, C
generates fitting constraints for all parfactors. Regarding our
example, CDL generates three constraint worlds, each with
two constraints, to instantiate Gex. Using rules in a constraint
program is a form of meta-level logic programming, which
allows for formulating constraints on constraints without a
specific domain.

Next, we consider possible domains and distributions over
domains.

Worlds of Domains
Constraint programs still need domains or constants to gen-
erate constraint worlds. In unknown universes, these con-
stants are not available. In a naive way, one could gener-
ate all possible domains, from one constant for each log-
var to infinite domains, leading to infeasibly many possible
domains. Given knowledge about the setting in which one
wants to reason (like in the example above about treatments
t1, t2, t3), one may list all possible domains. Assumptions
may further limit the number of worlds, e.g.: (i) Logvars re-
quire discrete domains of at least one element. (ii) Small
worlds (domains) are usually more likely than large ones.

0.00

0.04

0.08

0.12

0.16

0 500 1000 1500 2000

Figure 2: Discrete distribution over domain sizes of a logvar

(iii) Only “orders” of domain sizes are relevant, not a set of
domain sizes with an increment of 1 between them. Depend-
ing on the concrete use case, setting up a discrete distribution
over domain sizes might be valuable, with the distribution
depending on assumptions valid for the use case.
Definition 5. Given a template model G, a domain world
DW is a set of domains {D(X)}X∈lv(G) for G. Given
a set of domain worlds {DWk}lk=1 and probabilities pk
for each DWk s.t. ∀k : pk ∈ [0, 1] and

∑
k pk = 1,

then D = {(DWk, pk)}lk=1 forms a distribution over do-
main worlds. Providing a constraint program C with DWk

yields a set of constraint worlds {CWj}mj=1. Instantiating
G with {CWj}mj=1 yields a set of parameterised models
{G|DW,CWj

}mj=1.
One may start with a set of guaranteed constants and add

varying numbers of possible constants for domain worlds,
inspired by the λ-completion of open-world probabilistic
databases (Ceylan, Darwiche, and Van den Broeck 2016).
The probabilities allow for measuring how likely a particu-
lar instantiation is compared to others. Given a distribution,
one can specify a threshold t to account only for domains
with a probability larger t, which enables some filtering even
before generating parameterised models for efficiency. An-
other way of restricting the number of worlds is to take do-
mains that lie within the standard deviation from the mean
or those whose probability make up around 95% of the dis-
tribution around its mean or maximum value.

Let us consider an example distribution for a single log-
var, e.g., X , the only unknown logvar given Gex and CDL.
Figure 2 shows a beta-binomial distribution (α = 6, β = 15)
based on the assumptions above. Possible domain sizes d go
from 0 to 2000 with a step size of 100 and probabilities for
[d− 100, d] for d > 0. A domain size of 0 has a probability
of 0. The highest probability lies with a domain size of 500,
after which probabilities decrease again. The probability of
a domain size of 2000 is around 3.85 ·10−7. Probability dis-
tributions between domain and constraint worlds are joined
as follows.
Proposition 2. Let {(DWk, pk)}lk=1 form a distribution



over domain worlds DWk. Providing a constraint program
C with DWk leads to a set of constraint worlds Ck =
{({Ck,j,i}ni=1, pk · pj)}mj=1 in which pj = 1

m if C does not
assign probabilities. If C assigns probabilities but only a set
of domains {DWk}lk=1 is given, {DWk}lk=1 is extended to
form a distribution by setting ∀k : pk = 1

l .

Multiplying probabilities pj and pk relies on pj and pk
being independent. The independence assumption is reason-
able given the discourse so far as the domain world proba-
bility does not influence the generation of constraint worlds,
which allows for multiplying the probabilities of domain
world and constraint world. Otherwise, the product has to be
replaced with an appropriate expression. Assigning a prob-
ability distribution over possible worlds follows Bayesian
thinking, which considers all possible worlds. Restricting a
model to one possible world (with probability 1) is a simpli-
fication, which our approach resolves.

Passing on a domain world to a constraint program C
enables C to generate constraint worlds for a template
model. Given Gex and CDL, assume the distribution from
Fig. 2 for X , denoted by px(d) with d referring to the
domain size of X . There are 20 domain worlds Dex =
{({xi}di=1, px(d)}2000d=100,d+=100 with probabilities px(d) be-
tween 3.85 · 10−7 and 1.42 · 10−1. For each domain world,
CDL yields three constraint worlds {({Cd,j,i}2i=1, px(d) ·
pj)}3j=1, i.e., overall 60 constraint worlds, each containing
a constraint for both g̃1 and g̃2. Some of the 60 constraint
worlds have very small probabilities. Hence, one could use
a threshold of t = 0.05 to restrict the domain worlds in Dex

to use as inputs for CDL. Given the distribution of Fig. 2,
t restricts the domain to sizes between 200 and 900, which
would lead to 8 · 3 = 24 constraint worlds. One could cas-
cade the filtering and drop constraint worlds if their proba-
bility goes below t as well (or choose a new t). Given Dex

as an input to CDL and t = 0.05 for cascaded filtering, the
number of constraint worlds goes down to 7, i.e., domain
sizes 200 to 800 combined with 0.7 pair(t1,t2).
The constraint worlds using 0.2 pair(t2,t3) and 0.1
pair(t1,t3) have a probability below t. With domain
and constraint worlds in place, we define a semantics for
models with unknown universes.

Distribution-based Semantics
To fully specify a model with an unknown universe, we re-
quire three components: (i) A template model G provides a
structure and local distributions. (ii) A constraint program
C generates constraint worlds. A template model can be in-
stantiated with a constraint world, leading to a parameterised
model as in Definition 1, which follows distribution seman-
tics. (iii) A set of domain worlds D specifies (a distribution
over) possible domain worlds. Each domain world can be
passed to the constraint program. The semantics are defined
as follows.

Definition 6. Let G be a template model, C a constraint
program, and D domain worlds. A model with unknown
universe is given by a triple (G, C,D). The semantics is
given by instantiating G with constraint worlds C for each

DW ∈ D. The result is a set of parameterised models
G = {(G|CW , p)}CW∈C(DW ),DW∈D.

Using the formalism of a constraint program, decoupled
from a specific constraint language, allows for choosing a
constraint language suitable for a specific setup. One could
use Bayesian logic to specify a distribution over possible
models (Milch et al. 2005). Using parameterised models as
a basis makes it straightforward to retain the capability for
lifted inference, especially exact inference.

The section above discusses the constraint worlds com-
ing from domain worlds, which in turn lead to parame-
terised models: With Gex, CDL, Dex, and cascading filtering
with t = 0.05, the semantics yields eight constraint worlds
Cex5 = {({Cd,j=1,i}2i=1, px(d) ·pj=1)}800d=200,d+=100, lead-
ing to parameterised models Gex = {(Gex|CWd,1

, px(d) ·
p1)}800d=200,d+=100. Each G ∈ Gex contains parfactors
g0, g1, g2 with signatures as in Eqs. (1) to (3) and identi-
cal mappings. Constraints C1 and C2 as well as associated
probabilities differ between the models. For d = 100, the
probability is 3.56 · 10−2 · 0.7 and the constraints are

C1 = ((X), {(x1), . . . , (x100)}),
C2 = ((X,T ), {(x1, t1), (x1, t2) . . . (x100, t1), (x100, t2)}).

A domain size of d = 500 leads to the most probable model.
The last step on our mission of exploring unknown universes
is query answering.

Query Answering in Unknown Universes
The semantics of a model with an unknown universe yields
a set of parameterised models. In each parameterised model,
query answering works as before, using LVE (or any other
algorithm of one’s liking) to answer queries, reaching a main
goal of this paper, again enabling tractable inference.

Theorem 1. Given a template model G, a constraint pro-
gram C for G, and a set of domain worlds D for G, result-
ing in a set of parameterised models G, query answering
on each G ∈ G is polynomial w.r.t. domain-sizes given
a domain-lifted inference algorithm, leading to a runtime
complexity of O(|G| · Tlift) with Tlift referring to the run-
time complexity of the inference algorithm used.

Answering a query on a set of parameterised models G
means that the answer is a set of probabilities or distribu-
tions. If G has a probability distribution associated, the set
of answers has the same distribution associated.

Proposition 3. Answering a query P (Q|E) on a set
of parameterised models G = {Gi}i, with i refer-
ring to the different models stemming from the do-
main and constraint worlds, leads to a set of answers
{PGi(Q|E)}i. If G has probabilities associated, i.e., G =
{(Gi, pi)}i, then the answers have probabilities associated,
i.e., {(PGi

(Q|E), pi)}i, forming a distribution over an-
swers.

That is a query leads to a probability distribution over
probabilities or probability distributions as a direct conse-
quence of the definitions and Propositions 1 and 2. Consider
a query for a marginal distribution of Sick(X) instantiated
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Figure 3: Left: P (Sick(x1) = true) and model probability for each parameterised model in Gex. Right: Model probability
and P (Sick(x1) = true) plotted for a Skyline query.

with x1. Each of the parameterised models in Gex provides
an answer, i.e., a marginal distribution for Sick(x1). On the
left, denoted by a circle, Fig. 3 shows the probabilities of
Sick(x1) = true for each model with domain sizes on the
x-axis. The stars denote the probability associated with each
parameterised model. As mentioned before, the model with
domain size d = 500 is most probable and returns a prob-
ability of 0.31 for Sick(x1) = true. Model probabilities
decrease to the left and right of 500. The queried probability
declines with the domain size rising.

Emerging New Queries: As we have a set of parame-
terised models and, therefore, a set of results, new queries
emerge. If asking for the probability of an event, e.g.,
Sick(x1) = true, one may be interested in those models
whose answers have highest probability (top-k query w.r.t.
query probability). A top-3 query w.r.t. query probabilities
in Fig. 3 returns the models with domain sizes 2 to 4 as they
lead to the highest probabilities for Sick(x1) = true. If
events such as Sick(x1) = true have been observed, guar-
anteed constants are available and a top-k query supports
identifying most probable domain sizes for other logvars.
Given the associated probabilities, one may be interested in a
top-k query w.r.t. model probabilities or in those models that
have the highest combined probabilities of event and model
(skyline query w.r.t. event and model probability). Figure 3
plots the model probabilities versus the query probabilities.
The skyline consists of the points labeled d = 200, d = 300,
d = 400, and d = 500, which form the outskirt of the points
from the origin of the plane. Asking for distributions, the re-
sults over different models might exhibit shifts or clusters
worth investigating. Another new avenue for queries regards
checking assumptions about models, e.g., “Do similar do-
main sizes lead to similar query results?” or “Do query re-
sults behave as expected when domain sizes increase (de-
crease)?”

As shown, given the semantics of models with unknown
universe and LVE as the reference algorithm, one can answer

various queries. Handling unknown universes leads to more
work as an algorithm performs query answering for multi-
ple instances, which share certain aspects. So, while this pa-
per focusses on the semantics, we briefly consider how one
would implement it.

Arriving at an Implementation: As the model structure
is identical for each constraint world and multiple queries
probably have to be answered, LVE would perform some
calculations multiple times. One could choose another al-
gorithm to implement the semantics. E.g., the lifted junc-
tion tree algorithm or first-order knowledge compilation
may provide a more suitable setting to answer multiple
queries. Both algorithms build a helper structure based on
the model. Given that the model structure is the same over
different instantiations, helper structures can be reused, con-
straints adapted as in adaptive inference (Acar et al. 2008;
Braun and Möller 2018), and results of calculations reused
to a certain extent (Kazemi and Poole 2016). Additionally,
one would seek to specify the constraint program in a way
that an algorithm can formulate queries about counts for the
constraint program, which returns answers ideally without
generating extensional constraints. Given top-k queries w.r.t.
query probabilities, one would aim at adapting an implemen-
tation in the spirit of top-k queries on probabilistic databases
as to not evaluate more models than necessary (Fagin 1999).

Conclusion
Lifted inference can be restored for models with unknown
domains by creating descriptions of possible constraints and
domains. Using those descriptions, one generates worlds to
instantiate a template model. Instantiating a template model
yields a set of parameterised models, in which distribu-
tion semantics hold again. With distribution semantics, lifted
and thereby, tractable inference w.r.t. domains is possible
again. Given a distribution over domain or constraint worlds,
the number of worlds can be restricted to a feasible num-
ber. As the same template model is instantiated with dif-



ferent worlds, efficient query answering is possible, reusing
helper structures or calculations. Thus, the proposed seman-
tics seems to be practically useful. Additionally, new and
interesting queries arise that allow for exploring or checking
a model.

New inference tasks include automatic generation of in-
stances guaranteed to exist in open universes or learning
constraint rules in unknown universes. Detaching a model
from a known universe brings us closer to understanding
how transfer learning works: Transferring a model from
one domain to a next opens up possibilities for assumptions
changing w.r.t. indistinguishable individuals.
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Preventing Groundings and Handling Evidence in the Lifted
Junction Tree Algorithm. In Proceedings of KI 2017: Ad-
vances in Artificial Intelligence, 85–98. Springer.
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