Abstract
Deoxys-BC is the core internal tweakable block cipher of the authenticated encryption schemes Deoxys-I and Deoxys-II. Deoxys-II is one of the six schemes in the final portfolio of the CAESAR competition, while Deoxys-I is a 3rd round candidate. By well studying the new method proposed by Cid et al. at ToSC 2017 and BDT technique proposed by Wang and Peyrin at ToSC 2019, we find a new 11-round related-tweakey boomerang distinguisher of Deoxys-BC-384 with probability of \(2^{-118.4}\), and give a related-tweakey rectangle attack on 13-round Deoxys-BC-384 with a data complexity of \(2^{125.2}\) and time complexity of \(2^{186.7}\), and then apply it to analyze 13-round Deoxys-I-256-128 in this paper. This is the first time that an attack on 13-round Deoxys-I-256-128 is given, while the previous attack on this version only reaches 12 rounds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that if 4 out of 8 input-output bytes of MixColumns are known, all other bytes could be deduced.
References
National Institute of Standards and Technology. Advanced Encryption Standard. In: FIPS PUB 197, Federal Information Processing Standards Publication (2001)
The CAESAR committee. CAESAR: Competition for authenticated encryption: Security, applicability, and robustness (2014). http://competitions.cr.yp.to/caesar.html
Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Submission to caesar: Deoxys v1.41, October 2016. http://competitions.cr.yp.to/round3/deoxysv141.pdf
Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_3
Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15
Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: A security analysis of Deoxys and its internal tweakable blockciphers. IACR Trans. Symmetric Cryptol. 2017(3), 73–107 (2017)
Sasaki, Y.: Improved related-tweakey boomerang attacks on Deoxys-BC. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 87–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_6
Mehrdad, A., Moazami, F., Soleimany, H.: Impossible differential cryptanalysis on Deoxys-BC-256. Cryptology ePrint Archive, Report 2018/048 (2018). https://eprint.iacr.org/2018/048
Zong, R., Dong, X., Wang, X.: Related-tweakey impossible differential attack on reduced-round Deoxys-BC-256. Cryptology ePrint Archive, Report 2018/680 (2018). https://eprint.iacr.org/2018/680
Li, R., Jin, C.: Meet-in-the-middle attacks on round-reduced tweakable block cipher Deoxys-BC. IET Inf. Secur. 13(1), 70–75 (2019)
Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang Connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_22
Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. Application to AES variants and Deoxys. IACR Trans. Symmetric Cryptol. 2019(1), 142–169 (2019)
Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks on Deoxys-BC including BDT effect. IACR Trans. Symmetric Cryptol. 2019(3), 121–151 (2019)
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4
Liskov, M., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. J. Cryptol. 24(3), 588–613 (2011)
Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12
Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_6
Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_21
Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_30
Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9
Zhao, B., Dong, X., Meier, W., Jia, K., Wang, G.: Generalized related-key rectangle attacks on block ciphers with linear key schedule: applications to SKINNY and GIFT. Cryptology ePrint Archive, Report 2019/714 (2019). https://eprint.iacr.org/2019/714
Acknowledgments
We would like to thank the anonymous reviewers for their insightful comments. This work is supported by the National Key Research and Development Program of China (No. 2017YFA0303903), the National Natural Science Foundation of China (No. 61902207), the National Cryptography Development Fund (No. MMJJ20180101, MMJJ20170121), Zhejiang Province Key R&D Project (No. 2017C01062).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, B., Dong, X., Jia, K., Meier, W. (2019). Improved Related-Tweakey Rectangle Attacks on Reduced-Round Deoxys-BC-384 and Deoxys-I-256-128. In: Hao, F., Ruj, S., Sen Gupta, S. (eds) Progress in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019. Lecture Notes in Computer Science(), vol 11898. Springer, Cham. https://doi.org/10.1007/978-3-030-35423-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-35423-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35422-0
Online ISBN: 978-3-030-35423-7
eBook Packages: Computer ScienceComputer Science (R0)