Abstract
In this work we describe a modular neural network approach to use expert modules as a classification model for 12-lead cardiac arrhythmias. The modular neural network is designed using Multilayer perceptron as classifiers. This modular neural network was trained and tested with the Physilalisch-Technische Bundesantalt diagnostic ECG database (PTB database) of physioBank. The electrocardiograms are preprocessed to improve their classification through the proposed modular neural network. This modular neural network uses the features extracted of each signal such as autoregressive model coefficients, Shannon entropy and multifractal wavelets. We used the twelve electrode signals or leads included in the PTB database, such as i, ii, iii, avf, avr, avl, v1, v2, v3, v4, v5, v6, vx, vy and vz. The modular neural network is composed by twelve expert modules, where each module is used to perform the classification for the specific signal lead. The expert modules are based on the following models: multilayer perceptron with scaled conjugate gradient backpropagation (MLP-SCG). Finally, the outputs from the expert modules are combined using winner-takes-all integration as modular neural network integration method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Martis, R.J., Achayra, U.R., Prasad, H., Chua, C.K.: Application of higher order statistics for atrial arrhythmia classification. Biomed. Sign. Process. Control 8(6), 888–900 (2013)
Amezcua, J., Melin, P.: A modular LVQ neural network with fuzzy response integration for arrhythmia classification. In: IEEE Conference on Norbert Wiener in the 21st Century (2014)
Melin, P., Amezcua, J., Valdez, F., Castillo, O.: A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias. Inf. Sci. 279, 483–497 (2014)
Khalaf, A.F., Owis, M.L., Yassine, I.A.: A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst. Appl. 42(21), 8361–8368 (2015)
Homaeinezhad, M.R., Atyabi, S.A., Tavakkoli, E., Toosi, H.N., Ghaffari, A., Ebrahimpour, R.: ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39(2), 2047–2058 (2012)
Zhao, Q., Zhang, L.: ECG feature extraction and classification using wavelet transform and support vector machines. IEEE Int. Conf. Neural Netw. Brain 2, 1089–1092 (2005)
Bousseljot, R., Kreiseler, D., Schnabel, A.: Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet. Biomedizinische Technik, Band 40, Ergänzungsband 1 p. S 317 (1995)
Wang, J.S., Chiang, W.C., Hsu, Y.L., Yang, Y.T.: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing. 116, 38–45 (2013)
Javadi, M., Asghar, S.A., Sajedin, A., Ebrahimpour, R.: Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed. Sign. Process. Control. 8, 289–296 (2013)
Al Rahhal, M.M., Bazi, Y., Alhichri, H., Alajlan, N., Melgani, F., Yager, R.R.: Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345, 340–354 (2016)
Megat, M.S.A., Jahidin, A.H., Norall, A.N.: Hybrid multilayered perceptron network classification of bundle branch blocks. In: IEEE 2012 International Conference Biomedical Engineering Icobe (2012). ISBN 978-1-4577-1991-2
Castillo, O., Melin, P., Ramirez, E., Soria, J.: Hybrid intelligent system for cardiac arrhythmia classification with fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system. Expert Syst. Appl. 39, 2947–2955 (2012)
Melin, P., Ramirez, E., Prado-Arechiga, G.: Cardiac arrhythmia classification using computational intelligence: neural networks and fuzzy logic techniques. European Heart J. OXFORD academic 38, P6388 (2017)
Osowki, S., Markiewicz, T., Hoal, L.T.: Recognition and classification systems of arrhythmia using ensemble of neural networks. Measurement 41(6), 610–617 (2018)
Osowksi, S., Siwek, K., Siroic, R.: Neural system for heartbeats recognition using genetically integrated ensemble of classifiers. Comput. Biol. Med. 41(3), 173–180 (2011)
Jadhav, S.M., Nalbalwar, S.L., Ghatol, A.A.: ECG arrhythmia classification using modular neural network model. In: IECBES (2012) ISBN 978-1-4244-7600-8
Ozbay, Y., Tezel, G.: A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digit. Sig. Proc. 20, 1040–1049 (2010)
Ozbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2005)
Gaetano, D., Panunzi, S., Rinaldi, F., Risi, A., Sciandrone, M.A.: A patient adaptable ECG beat classifier based on neural networks. Appl. Math. Comput. 213(1), 243–249 (2009)
Melin, P., Castillo, O.: A review of the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40(13), 5413–5423 (2013)
Melin, P., Castillo, O.: A review on the applications of type-2 fuzzy logic in classification and pattern recognition. Expert Syst. Appl. 40, 5413–5423 (2013)
Ceylan, R., Ozbay, Y., Karlik, B.: A novel approach for classification of ECG arrhythmias: type-2 fuzzy clustering neural network. ACM 36(3), 6721–6727 (2009)
Chua, T.W., Tan, W.W.: Interval type-2 fuzzy system for ECG arrhythmia classification. Fuzzy Systems in Bioinformatics and Computational Biology, pp. 297–314. Springer, Berlin (2009). ISBN 978-3-540-89968-6
Tan, W.W., FOO, C.L., Chua, T.: Type-2 fuzzy system for ECG arrhythmic classification, FYZZ-IEEE (2007). ISBN 1-4244-1209-9
Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy K-Nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 15, 580–585 (1985)
Ramirez, E., Castillo, O., Soria, J.: Hybrid system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined by a fuzzy inference system.In: Softcomputing for Recognigtion Based on Biometrics, Studies in Computational Intelligence, vol. 312, pp. 37–53, Springer (2010). ISBN 978-3-642-15110-1
Ramirez, E., Melin, P., Prado-Arechiga, G.: Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification. Expert Syst. Appl. 126, 295–307 (2019)
Wozniak, M., Grana, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)
Melin, P., Prado-Arechiga, G., Miramontes, I., Medina. M.: A hybrid intelligent model based on modular neural network and fuzzy logic for hypertension risk diagnosis. J. Hypertension 34 (2016)
Nazmy, T.M., EL-Messiry, H., AL-Bokhity, B.: Classification of cardiac arrhythmia based on hybrid system. Int. J. Comput. Appl. 2 (2010)
Shao, Y.E., Hou, C.D., Chiu, C.C.: Hybrid intelligent modeling schemes for heart disease classification. Appl. Soft Comput. 14, 47–52 (2014)
Luz, E.J.D.S., Schwartz, W.R., Camara-Chavez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Prog. Biomed. 127, 144–164 (2015)
Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhytmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Prog. Biomed. 127, 52–63 (2016)
Jovic, A., Bogunovic, N.: Evaluating and comparing performance of feature combinations of heart rate variability measures for cardiac rhythm classification. Biomed. Sign. Process. Control. 7, 245–255 (2012)
Martis, R.J., Achayra, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA, and Discrete Wavelet Transform. Biomed. Sign. Process. Control 8, 437–448 (2013)
Zopounidis, M., Doumpos, M.: Multicriteria classification and sorting methods: a literature review. Eur. J. Oper. Res 138, 229–246 (2002)
Gacek, A., Pedrycz, W.: Ecg signal processing, Classification and Interpretation, a comprehensive framework of computational intelligence, Springer (2012) ISBN 978-0-85729-867-6
Martindale, J.L., Brown, D.F.M.: A visual guide to ECG interpretation, second edition. Wolters Kluwer (2017) ISBN 978-1-4963-2153-4
Hampton, J.R., Adlam, D.: The ECG in practice, 6th edn. Churchill Livingstone, Elsevier (2013). ISBN 978-0-7020-4643-8
Jayasinghe, R.: ECG Workbook. Elsevier, Churchill Livingstone (2012). ISBN 978-0-7295-4109-1
Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C.H., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation. 101(23), e215-e220 (2000)
Bishop, C.M.: Neural network for pattern recognition. Clarendon Press, Oxford, U.K
Leonarduzzi, R.F., Schlotthauer, G., Torres, M.E.: Wavelet leader based multifractal analysis of heart rate variability during myocardial ischaemia.In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ramírez, E., Melin, P., Prado-Arechiga, G. (2020). A Modular Neural Network Approach for Cardiac Arrhythmia Classification. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-35445-9_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35444-2
Online ISBN: 978-3-030-35445-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)