Skip to main content

Segmentation and Classification of Noisy Thermographic Images as an Aid for Identifying Risk Levels of Breast Cancer

  • Chapter
  • First Online:
Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications

Abstract

During 2016, breast cancer was the second cause of death among women within ages of 24–30. This makes mandatory to find reliable strategies that support physicians and medical services for early diagnosis of such disease. Currently, mammography is considered the gold instrument for assessing the risk of having breast cancer, but other methods are being analyzed, looking for systems that may be cheaper and easier to apply, including the use of thermographic images. In this paper, we present an analysis of the performance of a system based on a “Feed-Forward Neural Network” (FFNN), for the identification of two and three levels of risk cancer. Indeed, a system based on a “Regions-Convolutional Neural network” (R-CNN) for automatic segmentation of the breast is proposed. Both systems were tested in a private database developed by the “Center for Studies and Cancer Prevention, A.C.” located in Oaxaca, Mexico, which presents important challenges as class unbalances, a slack recording with respect to application of the protocol and noise. The systems were evaluated using three subsets of the database, built using images with different levels of challenges. Our results showed that a FNNN classifier performed well only with data strictly following the protocol, while the levels of performance with noisy data are not yet acceptable for real applications. In the other hand, the results obtained by the automatic segmentation based on R-CNN were competitive, encouraging for more research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. U. S. Food and Drug Administration. Mammography: What You Need to Know, 27 October 2017. [Online]. Available: https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm420463.htm. Accessed 16 Febrero 2018

  2. U.S. Food and Drug Administration.: Breast Cancer Screening: Thermogram No Substitute for Mammogram, 30 10 2017. [Online]. Available: https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm257499.htm. Accessed 16 Febrero 2018

  3. Centro de Estudios y Prevención del Cancer A.C.: Centro de Estudios y Prevención del Cancer, A.C. (2018) [Online]. Available: http://ceprec.org/index/index.html. Accessed 13 Febrero 2019

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH (2014)

    Google Scholar 

  5. Gonzalez-Hernandez, J., Recinella, A., Kandlikar, S., Dabydeen, D., Medeiros, L., Phatak, P.: Technology, application and potential of dynamic breast thermography for the detection of breast cancer. Int. J. Heat Mass Trans. 131, 558–573 (2019)

    Article  Google Scholar 

  6. Koay, J., Herry, C., Frize, M.: Analysis of breast thermography with an artificial neural network. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEMBS ‘04, Vol. 1, pp. 1159–1162 (2004)

    Google Scholar 

  7. Sossa Azuela, J.H., Rodríguez Morales, R.: Capítulo 2. Proceso de captación y formación de una imagen. In: Procesamiento y Análisis Digital de Imágenes, Madrid, Alfaomega pp. 45–59 (2011)

    Google Scholar 

  8. Zare, I., Ghafarpour, A., Zadeh, H., Haddadnia, J., Mohammad, S., Isfahani, M.: Evaluating the thermal imaging system in detecting certain types of breast tissue masses. Biomed. Res. 27(3), 670–675 (2016)

    Google Scholar 

  9. Hankare, P., Shah, K., Nair, D., Nair, D.: Breast cancer detection using thermography. Int. Res. J. Eng. Technol. 3(4), 2356–2395 (2016)

    Google Scholar 

  10. Reynoso Armenta, D.M.: Diagnosis of breast cancer through the processing of thermographic images and Neural Networks. Master thesis in Optics, Tonantzintla, Puebla (2017)

    Google Scholar 

  11. Luna, J.G.V., Gutierrez Delgado, F.: Feasibility of new-generation infrared screening for breast cancer in rural communities. US Obstetrics and Gynecology, Touch Briefings. 5, 52–56 (2010)

    Google Scholar 

  12. Hobbins, W.: In abnormal thermogram-significance in breast cancer. Interamer. J Rad. 12, 337 (1987)

    Google Scholar 

  13. Flir®.: Veterinary applications of thermography. Accessed 10 November 2017. [Online]. Available: http://www.flir.com/uploadedFiles/Thermography/MMC/Brochures/T820340/T820340_EN.pdf

  14. MathWorks®.: Help « rgb2gray, » . Available: https://www.mathworks.com/help/matlab/ref/rgb2gray.html. Accessed 31 October 2017

  15. MathWorks®.: Object Detection Using Deep Learning. Available: https://www.mathworks.com/help/vision/examples/object-detection-using-deep-learning.html?requestedDomain=www.mathworks.com. Accessed 16 Febrero 2018]

Download references

Acknowledgements

The authors would like to thank Dr. Francisco Gutierrez and the rest of the staff of CEPREC for their kindly support and advice during the development of this research. This work was supported by INAOE. D. Reynoso thanks the National Council of Science and Technology in Mexico (CONACYT) for the scholarship provided during the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Gomez-Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomez-Gil, P., Reynoso-Armenta, D., Castro-Ramos, J., Ramirez-Cortes, J.M., Alarcon-Aquino, V. (2020). Segmentation and Classification of Noisy Thermographic Images as an Aid for Identifying Risk Levels of Breast Cancer. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_21

Download citation

Publish with us

Policies and ethics