Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 862))

Abstract

The paper introduces the basis to control a simple planar quadrotor model in the tracking trajectory problem. The dynamics of the model is developed and a control system is designed and implemented to tracking two different trajectories without obstacles. General control system contains a PD controller to drive altitude (motion in z direction), and a cascade control scheme to drive y position by controlling orientation of roll angle. Results of the error position and command variables on two different trajectories are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim, H., Park, J., Lee, D., Kim, H.J.: Build your own quadrotor. IEEE Robot. Autom. Mag. 19(3), 33–45 (2012)

    Google Scholar 

  2. Ha, Q., Deville, U., Pham, Q., Hà, M.: On the min-cost traveling salesman problem with drone. Trans. Res. Part C: Emerg. Technol. 86(2018), 597–621 (2018)

    Article  Google Scholar 

  3. González-Sierra, J., Aranda-Bricaire, E., Hernández-Mendoza, D.E., Santiaguillo-Salinas, J.: Emulation of n-trailer systems through differentially driven multi-agent systems: continuous- and discrete- time approaches. J. Intell. Rob. Syst. 75(1), 129–146 (2014)

    Article  Google Scholar 

  4. González-Sierra, J., Aranda-Bricaire, E., Hernández-Martínez, E.G.: Robotic systems formation tracking with orientation convergence for groups of unicycles. Regular Paper

    Google Scholar 

  5. Castillo, O., Neyoy, H., Soria, J., García, M., Valdez, F.: Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot. Int. J. Adv. Robotic Syst. 10(1), 51 (2013)

    Article  Google Scholar 

  6. Neyoy, H., Castillo, O., Soria, J.: Dynamic fuzzy logic parameter tuning for ACO and its application in TSP problems. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems. Studies in Computational Intelligence, vol. 451. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Olivas, F., Valdez, F., Castillo, O.: Fuzzy system for parameter adaptation in ant colony optimization. In: 2014 IEEE Symposium on Swarm Intelligence (SIS), pp. 84–89 (2014)

    Google Scholar 

  8. Reinelt, G.: TSP_LIB-a traveling Salesman Problem Library. ORSA J. Comput. 3, 376–384 (1991)

    Article  Google Scholar 

  9. Perez, J., Melin, P., Castillo, O., Valdez, F., Gonzalez, C., Martinez, G.: Trajectory optimization for an autonomous mobile robot using the bat algorithm. In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds.) Fuzzy Logic in Intelligent System Design. NAFIPS 2017. Advances in Intelligent Systems and Computing, vol. 648. Springer, Cham (2018)

    Google Scholar 

  10. Wang, Z., Guo, J., Zheng, M., Wang, Y.: Uncertain multiobjective traveling salesman problem. Eur. J. Oper. Res. 241(2), 478–489 (2015). ISSN 0377-221

    Article  MathSciNet  Google Scholar 

  11. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: Gonzalez, J. R., et al. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), vol. 284, pp. 65–74 (2010)

    Chapter  Google Scholar 

  12. Pérez, J., Valdez, F., Castillo, O., Roeva, O.: Bat algorithm with parameter adaptation using Interval Type-2 fuzzy logic for benchmark mathematical functions. In: 2016 IEEE 8th International Conference on Intelligent Systems (IS), pp. 120–127 (2016)

    Google Scholar 

  13. Saraswathi, M., Bala, G., Murali, B., Deepak, B.: Optimal path planning of mobile robot using hybrid cuckoo search-bat algorithm. Procedia Comput. Sci. 133, 510–517 (2018). ISSN 1877-0509

    Article  Google Scholar 

  14. Mareli, M., Twala, B.: An adaptive Cuckoo search algorithm for optimization. Appl. Comput. Inf. 14(2), 107–115 (2018). ISSN 2210-8327

    Article  Google Scholar 

  15. Machado, A., et al.: Real time pathfinding with genetic algorithm. In: 2011 Brazilian Symposium on Games and Digital Entertainment, pp. 215–221. Salvador (2011)

    Google Scholar 

  16. Haupt, R., Haupt, S.: Practical Genetic Algorithms 2nd edn. A Wiley-Interscience Publication (2004)

    Google Scholar 

  17. Olivas, F., Valdez, F., Melin, P., Sombra, A., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019). ISSN 0020-0255

    Article  Google Scholar 

  18. González, B., Valdez, F., Melin, P., Prado-Arechiga, G.: Fuzzy logic in the gravitational search algorithm enhanced using fuzzy logic with dynamic alpha parameter value adaptation for the optimization of modular neural networks in echocardiogram recognition. Appl. Soft Comput. 37, 245–254 (2015)

    Article  Google Scholar 

  19. Olivas, F., Valdez, F., Castillo, O., et al.: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20, 1057 (2016). https://doi.org/10.1007/s00500-014-1567-3

    Article  Google Scholar 

  20. Saska, M., Macas, M., Preucil, L., Lhotska, L.: Robot path planning using particle swarm optimization of Ferguson splines. In: 2006 IEEE Conference on Emerging Technologies and Factory Automation, Prague, pp. 833–839 (2006)

    Google Scholar 

  21. Zhang, X., Chen, J., Xin, B., Fang, H.: Online path planning for UAV using an improved differential evolution algorithm. In: IFAC Proceedings, vol. 44, Issue No. 1, pp. 6349–6354 (2011). ISSN 1474-6670

    Article  Google Scholar 

  22. Zamuda, H., Hernández, J.; Success history applied to expert system for underwater glider path planning using differential evolution. Expert Syst. Appl. 119, 155–170 (2019). ISSN 0957-4174

    Article  Google Scholar 

  23. Peraza, C., Valdez, F., Castillo, O.: Study on the use of Type-1 and Interval Type-2 fuzzy systems applied to benchmark functions using the fuzzy harmony search algorithm. In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds.) Fuzzy Logic in Intelligent System Design, vol. 648, pp. 94–103. Springer International Publishing: Cham, Switzerland (2018)

    Google Scholar 

  24. Peraza, C., Valdez, F., Garcia, M., Melin, P., Castillo, O.: A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation. Algorithms 9, 69 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like thankful to Tijuana Institute of Technology and CONACYT by their support to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prometeo Cortés-Antonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortés-Antonio, P., Valdez, F., Castillo, O., Melin, P. (2020). Towards Tracking Trajectory of Planar Quadrotor Models. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_24

Download citation

Publish with us

Policies and ethics