Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 862))

  • 656 Accesses

Abstract

Model Predictive Control is a well-suited control strategy; however, it needs to solve two main problems in order to be applied, first, it is necessary to have a suitable model of the plant to be controlled, in order to allow an adequate prediction, second, it is necessary to solve an optimization problem. These two problems not always can be solved particularly for nonlinear complex systems. Therefore, in this chapter we propose two variations for Model Predictive Control, in a first stage a recurrent high order neural network is proposed to obtain a fitting model for the plant to be controlled, and, at the same time this neural model identifies the system on-line through available measurements. Then, in a second stage, the optimization problem is solved using a particle swarm optimization algorithm. Using these two modifications, it is proposed a Neural Evolutionary Predictive Control for discrete-time nonlinear systems under disturbances under disturbances, and its effectiveness is shown in the experimental results by using data obtained from a linear induction motor prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bemporad, A., Morari, M.: Robust model predictive control: a survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control. Lecture Notes in Control and Information Sciences, vol. 245. Springer, London (1999)

    Google Scholar 

  2. Allgower, F., Zheng, A.: Nonlinear Model Predictive Control. Springer, Berlin (2000)

    Book  Google Scholar 

  3. Chairez, I., García, A., Poznyak, A., Poznyak, T.: Model predictive control by differential neural networks approach. In: The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, pp. 1–8. https://doi.org/10.1109/ijcnn.2010.5596521. (2010)

  4. Wu,W., Cbang, J.-X.: Neural predictive control design for uncertain nonlinear systems. In: Proceedings of the IFAC Dynamics and Control of Process Systems, Cambridge, Massachusetts, USA (2004)

    Google Scholar 

  5. Rankovic, V., Radulovic, J., Grujovic, N., Divac, D.: Neural network model predictive control of nonlinear systems using genetic algorithms. Int. J. Comput. Commun. Control 7(3), 540–549 (2012)

    Article  Google Scholar 

  6. Akesson, B.M., Toivonen, H.T.: A neural network model predictive controller. J. Process Control 16, 937–946 (2006)

    Article  Google Scholar 

  7. Pan, Y., Wang, J.: Robust model predictive control using a discrete-time recurrent neural network. In: Sun, F. et al. (eds.) Part I, LNCS 5263, pp. 883–892, Springer (2008)

    Google Scholar 

  8. Ge, S.S., Yang, C., Lee, T.H.: Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time. IEEE Trans. Neural Netw. 19(9), 1599–1614 (2008)

    Article  Google Scholar 

  9. Yan, Z., Wang, J.: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 457–469 (2014)

    Article  MathSciNet  Google Scholar 

  10. Georgieva, P., Feyo de Azevedo, S.: Neural networks for model predictive control. In: Proceedings of the 2011 International Joint Conference on Conference: Neural Networks (IJCNN), San Jose California, USA (2011)

    Google Scholar 

  11. Hedjar, R.: Adaptive neural network model predictive control. Int. J. Innov. Comput. Inf. Control. 9(3) (2013)

    Google Scholar 

  12. Wang, X., Xiao, J.: PSO-Based Model Predictive Control for Nonlinear Processes. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005, LNCS 3611, pp. 196–203, Springer (2005)

    Google Scholar 

  13. Alanis, A.Y., Sanchez, E.N., Loukianov, A.G.: Real-time recurrent neural state estimation. IEEE Trans. Neural Netw. 22(3), 497–505 (2011)

    Article  Google Scholar 

  14. Alanis, A.Y., Rios, J.D., Rivera, J., Arana-Daniel, N., Lopez-Franco, C.: Real-time discrete neural control applied to a linear induction motor. Neurocomputing 164, 240–251 (2015)

    Article  Google Scholar 

  15. Rios, J.D., Alanis, A.Y., Lopez-Franco, C., Arana-Daniel, N.: RHONN identifier-control scheme for nonlinear discrete-time systems with unknown time-delays. J. Franklin Inst. 355, 218–249 (2018)

    Article  MathSciNet  Google Scholar 

  16. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  17. Arora, R.K.: Optimization: Algorithms and Applications. Chapman and Hall/CRC Press, UK (2015)

    Book  Google Scholar 

  18. Das, T.K., Venayagamoorthy, G.K.: Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA. IEEE Trans. Ind. Appl. 44(5), 1445–1457 (2008)

    Article  Google Scholar 

  19. Boldea, I., Nasar, S.A.: Linear Electric Actuators and Generators. Cambridge University Press, Cambridge, England (1997)

    Book  Google Scholar 

  20. Gieras, J.F.: Linear Inductions Drives. Oxford University Press, Oxford, England (1994)

    Google Scholar 

  21. Takahashi, I., Ide, Y.: Decoupling control of thrust and attractive force of a LIM using a space vector control inverter. IEEE Trans. Ind. Appl. 29, 161–167 (1993)

    Article  Google Scholar 

  22. Loukianov, A.G., Rivera, J., Cañedo, J.M.: Discrete time sliding mode control of an induction motor. In: Proceedings IFAC’02, Barcelone, Spain (2002)

    Google Scholar 

  23. Benitez, V.H., Sanchez, E.N., Loukianov, A.G.: Neural identification and control for linear induction motors. J. Intel. Fuzzy Syst. 16(1), 33–55 (2005)

    MATH  Google Scholar 

  24. Kazantzis, N., Kravaris, C.: Time-discretization of nonlinear control systems via Taylor methods. Comput. Chem. Eng. 23, 763–784 (1999)

    Article  Google Scholar 

  25. Chen, P.-A., Chang, L.-C., Chang, F.-J.: Reinforced recurrent neural networks for multi-step-ahead flood forecasts. J. Hydrol. 497, 71–79 (2013). https://doi.org/10.1016/j.jhydrol.2013.05.038

    Article  Google Scholar 

  26. Chi, J., Kim, H.-C.: Prediction of arctic sea ice concentration using a fully data driven deep neural network. Remote Sens. 9(12), 1305 (2017). https://doi.org/10.3390/rs9121305

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the support of CONACYT Mexico, through Projects CB256769 and CB258068 (Project supported by Fondo Sectorial de Investigacion para la Educacion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Y. Alanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alanis, A.Y., Arana-Daniel, N., Lopez-Franco, C., Rios, J.D. (2020). Neural Evolutionary Predictive Control for Linear Induction Motors with Experimental Data. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_28

Download citation

Publish with us

Policies and ethics