Abstract
This paper presents an approach to optimize the filter size of a convolutional neural network using the fuzzy gravitational search algorithm (FGSA). The FGSA method has been applied in others works to optimize traditional neural networks achieving good results; for this reason, is used in this paper to optimize the parameters of a convolutional neural network. The optimization of the convolutional neural network is used for the recognition and classification of human faces images. The presented model can be used in any image classification, and in this paper the optimization of convolutional neural network is applied in the CROPPED YALE database.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Le Cun Jackel, L.D., Boser, B., Denker, J S., Henderson, D., Howard, R.E., Hubbard, W., Le Cun, B., Denker J., Henderson, D.: Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 396–404 (1990)
Martínez, G.E., Melin, P., Mendoza, O., Castillo, O.: Face recognition with a Sobel edge detector and the Choquet integral as integration method in a modular neural networks. In: Neural Networks and Nature-Inspired Optimization, pp. 59–70. Springer, Cham (2015)
Melin, P., Sánchez, D.: Multi-objective optimization for modular granular neural networks applied to pattern recognition. Inf. Sci. (Ny) 460–461, 594–610 (2018)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2323 (1998)
Jialue, F., Wei, X., Ying, W., Yihong, G.: Human tracking using convolutional neural networks. IEEE Trans. Neural Networks 21(10), 1610–1623 (2010)
Frome, A., Cheung, G., Abdulkader, A., Zennaro, M., Wu, B., Bissacco, A., Hartwig, H., Neven, H., Vincent, L.: Large-scale privacy protection in google street view. In: ICCV, pp. 2373–2380. IEEE (2009)
Kanou Kanou, S.E., Ferrari, R.C., Mirza, M., Jean, S., Carrier, P.L., Dauphin, Y., Boulanger-Lewandowski, N., Aggarwal, A., Zumer, J., Lamblin, P., Raymond, J.P., Pal, C., Desjardins, G., Pascanu, R., Warde-Farley, D., Torabi, A., Sharma, A., Bengio, E., Konda, K.R., Wu, Z., Bouthillier, X., Froumenty, P., Gülçehre, G., Memisevic, R., Vincent, P., Courville, A., Bengio, Y.: Combining modality specific deep neural networks for emotion recognition in video. In: Proceeding 15th ACM International Conference Multimodal Interact—ICMI’13, pp. 543–550 (2013)
Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., Barbano, P.E.: Toward automatic phenotyping of developing embryos from videos. IEEE Trans. Image Process. 14(9), 1360–1371 (2005)
Jain, V., Murray, J., Roth, F., Turaga, S., Zhigulin, V.: Supervised learning of image restoration with convolutional networks supplementary material: specific methods. Parameters 2(2), 3–5 (2007)
Poma, Y., Melin, P., González, C.I., Martínez, G.E.: Optimal recognition model based on convolutional neural networks and fuzzy gravitational search algorithm method (2018)
Wu, H., Bie, R., Guo, J., Meg, X., Wang, S.: Optimized CNN based image recognition through target region selection 156, 772–777 (2018)
Nasse, F., Thurau, C., Fink, G.A.: Face detection using gpu-based convolutional neural networks. Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artificial Intelligence Lect. Notes Bioinformatics), 5702, 83–90 (2009)
Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. In: Proceeding EEE Congress on Evolutionary Computation (CEC), pp. 1068–1074 (2013)
Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. (Ny) 179(13), 2232–2248 (2009)
Hatamlou, A., Abdullah, S., Othman, Z.: Gravitational search algorithm with heuristic search for clustering problems. Conf. Data Min. Optim. June, 190–193 (2011)
Verma, O.P., Sharma, R.: Newtonian gravitational edge detection using gravitational search algorithm. In: International Conference on Communication Systems and Network Technologies IEEE, Rajkot, India, pp. 184–188 (2012)
Bengio, Y., LeCun, Y.: Convolution networks for images, speech, and time-series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks. MIT Press, vol. 1, pp. 1–5 (1998)
Chellapilla, K., Puri, S., Simard, P.: High performance convolutional neural networks for document processing. Int. Work. Front. Handwrite. Recognition (2006)
Venkatesan, R., Li, B.: Convolutional Neural Networks in Visual Computing: A Concise Guide. Engineering, Taylor and Francis Group, CRC Press, Data-Enabled (2017)
Ranzato, M.A., Huang, F.J., Boureau, Y.L., LeCun, Y.: Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE Conference Computing Vis. Pattern Recognition, pp. 1–8 (2007)
Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recognition with convolutional neural networks. In: ICPR, International Conference Pattern Recognition, pp. 3304–3308 (2012)
Lu, L., Zheng, Y., Carneiro, G., Yang, L.: Deep Learning and Convolutional Neural Networks for Medical Image Computing. Springer (2017)
Schutz, B.: Gravity from the ground up. Cambridge University Press, Cambridge (2003)
Acknowledgements
We thank sour sponsor CONACYT & the Tijuana Institute of Technology for the financial support provided with the scholarship number 816488.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Poma, Y., Melin, P., González, C.I., Martínez, G.E. (2020). Filter Size Optimization on a Convolutional Neural Network Using FGSA. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-35445-9_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35444-2
Online ISBN: 978-3-030-35445-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)