Skip to main content

Comparative Analysis of Multi-objective Metaheuristic Algorithms by Means of Performance Metrics to Continuous Problems

  • Chapter
  • First Online:
Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 862))

  • 677 Accesses

Abstract

Multi-objective problems (MOP) are an important type of real-world problem that involves more than one objective that must be optimized simultaneously. There exists a wide variety of metaheuristic algorithms aimed to work on that type of problems, however, the selection of which algorithm should be used to a given MOP depends on the expertise of the researcher. This decision is not straightforward and usually means to use extra computational resources to try different multi-objective metaheuristics even before to try to solve the interested domain. In the state of the art, there exists several metrics to compare and contrasts the performance of two or more given multi-objective algorithms. In this work, we use these metrics to compare a set of well-known multi-objective metaheuristics over the continuous CEC 2009 benchmark with the objective to give the interested researcher useful information to properly select a multi-objective algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, J., Azarm, S.: Metrics for quality assessment of a multiobjective design optimization solution set. J. Mech. Des. 123(1), 18 (2001)

    Article  Google Scholar 

  2. Giagkiozis, I., Purshouse, R.C., Fleming, P.J.: An overview of population-based algorithms for multi-objective optimisation. Int. J. Syst. Sci. pbo˙ijss˙final Int. J. Syst. Sci. 46(00), 1–42 (2013)

    Article  MathSciNet  Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

    Article  Google Scholar 

  4. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  5. Dorado, D., Guasmayán, F., Bravo, M., Peluffo, D.: Estudio comparativo de NSGA-II y PSO como métodos de optimización multiobjetivo en problemas con frente optimo de pareto convexo. Nov 2016

    Google Scholar 

  6. Coello Coello, C.A., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, Vol. 2, pp. 1051–1056 (2002)

    Google Scholar 

  7. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance, pp. 505–519. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  8. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  9. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In 2009 IEEE Congress on Evolutionary Computation, CEC 2009, pp. 203–208 (2009)

    Google Scholar 

  10. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/ D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  11. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  12. Khan, W., Zhang, Q.: MOEA/D-DRA with two crossover operators. In 2010 UK Workshop on Computational Intelligence, UKCI 2010, pp. 1–6 (2010)

    Google Scholar 

  13. Riquelme, N., Von Lücken, C., Barán, B.: Performance metrics in multi-objective optimization. In: Proceedings—2015 41st Latin American Computing Conference, CLEI 2015, pp. 1–11 (2015)

    Google Scholar 

  14. Lwin, K., Qu, R., Kendall, G.: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Appl. Soft Comput. J. 24, 757–772 (2014)

    Article  Google Scholar 

  15. Reguianski, T.L.: The air force institute of technology. IRE Trans. Educ. E-5(2), 117–118 (1962)

    Article  Google Scholar 

  16. Coello Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  17. Li, X., Wei, L.X., Fan, R., Sun, H., Hu, Z.Y.: A hybrid multiobjective particle swarm optimization algorithm based on R2 indicator. IEEE Access 6, 14710–14721 (2018)

    Article  Google Scholar 

  18. Liu, H.L., Chen, L., Zhang, Q., Deb, K.: Adaptively allocating search effort in challenging many-objective optimization problems. IEEE Trans. Evol. Comput. 22(3), 433–448 (2018)

    Article  Google Scholar 

  19. Sato, H., Aguirre, H.E., Tanaka, K.: Local dominance using polar coordinates to enhance multiobjective evolutionary algorithms. In: Proceedings 2004 Congress Evolutionary Computation, vol. 1, pp. 188–195 (2004)

    Google Scholar 

  20. Dawson, P., Parks, G., Jaeggi, D., Molina-Cristobal, A., Clarkson, P.J.: The development of a multi-threaded multi-objective tabu search algorithm. In: Dawson, P., Parks, G., Jaeggi, D., Molina-Cristobal, A., John Clarkson, P (eds.) Evolutionary Multi-Criterion Optimization. Springer, Berlin, Heidelberg, pp. 242–256 (2007)

    Google Scholar 

  21. Zitzler, E., Knowles, J., Thiele, L.: Quality Assessment of Pareto Set Approximations, pp. 373–404. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  22. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W.: Multiobjective optimization test instances for the CEC 2009 special session and competition. In: 2009 IEEE Congress on Evolutionary Computation (CEC 2009), pp. 1–30 (2009)

    Google Scholar 

  23. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: 2009 IEEE Congress on Evolutionary Computation, CEC 2009, pp. 203–208 (2009)

    Google Scholar 

  24. Soria-Alcaraz, J.A., Sotelo-Figueroa, M.A., Espinal, A.: Statistical comparative between selection rules for adaptive operator selection in vehicle routing and multi-knapsack problems. In: Studies in Computational Intelligence, Vol. 749, pp. 389–400 (2018)

    Google Scholar 

  25. Jia, K., He, Z.: DOA identification of communication emitters based on Shapiro-Wilk test and divisive hierarchical cluster analysis Kexin. In: 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), pp. 1–4 (2010)

    Google Scholar 

  26. Danila, A., Ungureanu, D., Moraru, S.A., Voicescu, N.: An implementation of the variance analysis (ANOVA) for the power factor optimization at distribution level in smart grid. In: Proceedings—2017 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2017 and 2017 Intl Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2017, pp. 48–53 (2017)

    Google Scholar 

  27. Soria-Alcaraz, J.A., Espinal, A., Sotelo-Figueroa, M.A.: Evolvability metric estimation by a parallel perceptron for on-line selection hyper-heuristics. IEEE Access 5, 7055–7063 (2017)

    Article  Google Scholar 

  28. Durillo, J.J., Nebro, A.J., Luna, F., Dorronsoro, B., Alba, E.: jMetal: A Java Framework for Developing Multi-Objective Optimization Metaheuristics (2015)

    Google Scholar 

  29. Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective optimization: design and architecture. In IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

    Google Scholar 

Download references

Acknowledgements

Authors express their gratitude to the Universidad de Guanajuato (UG) for its support provided to carry out the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Soria-Alcaraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Juarez-Santini, C., Soria-Alcaraz, J.A., Sotelo-Figueroa, M.A., Velino, EJ. (2020). Comparative Analysis of Multi-objective Metaheuristic Algorithms by Means of Performance Metrics to Continuous Problems. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_37

Download citation

Publish with us

Policies and ethics