Skip to main content

Explaining Hierarchical Multi-linear Models

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11940))

Included in the following conference series:

Abstract

We are interested in the explanation of the solution to a hierarchical multi-criteria decision aiding problem. We extend a previous approach in which the explanation amounts to identifying the most influential criteria in a decision. This is based on an influence index which extends the Shapley value on trees. The contribution of this paper is twofold. First, we show that the computation of the influence grows linearly and not exponentially with the depth of the tree for the multi-linear model. Secondly, we are interested in the case where the values of the alternatives are imprecise on the criteria. The influence indices become thus imprecise. An efficient computation approach is proposed for the multi-linear model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacchus, F., Grove, A.: Graphical models for preference and utility. In: Conference on Uncertainty in Artificial Intelligence (UAI), Montreal, Canada, pp. 3–10, July 1995

    Google Scholar 

  2. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  3. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)

    Article  MathSciNet  Google Scholar 

  4. Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influence. In: IEEE Symposium on Security and Privacy, San Jose, CA, USA, May 2016

    Google Scholar 

  5. Diestel, R.: Graph Theory. Springer, New York (2005)

    MATH  Google Scholar 

  6. Fishburn, P.: Interdependence and additivity in multivariate, unidimensional expected utility theory. Int. Econ. Rev. 8, 335–342 (1967)

    Article  Google Scholar 

  7. Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  8. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI 2004), San Jose, California, pp. 167–172, July 2004

    Google Scholar 

  9. Labreuche, C., Fossier, S.: Explaining multi-criteria decision aiding models with an extended Shapley value. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm, Sweden, pp. 331–339, July 2018

    Google Scholar 

  10. Lundberg, S., Lee, S.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, pp. 4768–4777 (2017)

    Google Scholar 

  11. Owen, G.: Multilinear extensions of games. Management Sci. 18, 64–79 (1972)

    Article  MathSciNet  Google Scholar 

  12. Ribeiro, M., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the predictions of any classifier. In: KDD 2016 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, pp. 1135–1144 (2016)

    Google Scholar 

  13. Rota, G.: On the foundations of combinatorial theory I. Theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2, 340–368 (1964)

    Article  MathSciNet  Google Scholar 

  14. Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Vol. II. Annals of Mathematics Studies, no. 28, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  15. Sugeno, M.: Fuzzy measures and fuzzy integrals. Trans. S.I.C.E. 8(2), 218–226 (1972)

    Google Scholar 

  16. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31(2), 841–887 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Labreuche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Labreuche, C. (2019). Explaining Hierarchical Multi-linear Models. In: Ben Amor, N., Quost, B., Theobald, M. (eds) Scalable Uncertainty Management. SUM 2019. Lecture Notes in Computer Science(), vol 11940. Springer, Cham. https://doi.org/10.1007/978-3-030-35514-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35514-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35513-5

  • Online ISBN: 978-3-030-35514-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics