Skip to main content

ConvNet and Dempster-Shafer Theory for Object Recognition

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2019)

Abstract

We propose a novel classifier based on convolutional neural network (ConvNet) and Dempster-Shafer theory for object recognition allowing for ambiguous pattern rejection, called the ConvNet-BF classifier. In this classifier, a ConvNet with nonlinear convolutional layers and a global pooling layer extracts high-dimensional features from input data. The features are then imported into a belief function classifier, in which they are converted into mass functions and aggregated by Dempster’s rule. Evidence-theoretic rules are finally used for pattern classification and rejection based on the aggregated mass functions. We propose an end-to-end learning strategy for adjusting the parameters in the ConvNet and the belief function classifier simultaneously and determining the rejection loss for evidence-theoretic rules. Experiments with the CIFAR-10, CIFAR-100, and MNIST datasets show that hybridizing belief function classifiers with ConvNets makes it possible to reduce error rates by rejecting patterns that would otherwise be misclassified.

This research was carried out in the framework of the Labex MS2T, which was funded by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR- 11-IDEX-0004-02). It was also supported by a scholarship from the China Scholarship Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bi, Y.: The impact of diversity on the accuracy of evidential classifier ensembles. Int. J. Approximate Reasoning 53(4), 584–607 (2012)

    Article  MathSciNet  Google Scholar 

  3. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster-Shafer Theory of Belief Functions. STUDFUZZ, vol. 219, pp. 57–72. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-44792-4_3

    Chapter  Google Scholar 

  4. Denœux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–813 (1995)

    Article  Google Scholar 

  5. Denœux, T.: Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recogn. 30(7), 1095–1107 (1997)

    Article  Google Scholar 

  6. Denœux, T.: A neural network classifier based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(2), 131–150 (2000)

    Article  Google Scholar 

  7. Denœux, T.: Logistic regression, neural networks and Dempster-Shafer theory: a new perspective. Knowl.-Based Syst. 176, 54–67 (2019)

    Article  Google Scholar 

  8. Denœux, T., Dubois, D., Prade, H.: Representations of uncertainty in artificial intelligence: beyond probability and possibility. In: Marquis, P., Papini, O., Prade, H. (eds.) A Guided Tour of Artificial Intelligence Research, Chap. 4. Springer (2019)

    Google Scholar 

  9. Denœux, T., Kanjanatarakul, O., Sriboonchitta, S.: A new evidential K-nearest neighbor rule based on contextual discounting with partially supervised learning. Int. J. Approximate Reasoning 113, 287–302 (2019)

    Article  MathSciNet  Google Scholar 

  10. Gomez, A.N., Zhang, I., Swersky, K., Gal, Y., Hinton, G.E.: Targeted dropout. In: CDNNRIA Workshop at the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal (2018)

    Google Scholar 

  11. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  12. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, pp. 1746–1751 (2014)

    Google Scholar 

  13. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. University of Toronto, Technical report (2009)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  15. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Leng, B., Liu, Y., Yu, K., Zhang, X., Xiong, Z.: 3D object understanding with 3D convolutional neural networks. Inf. Sci. 366, 188–201 (2016)

    Article  MathSciNet  Google Scholar 

  18. Lin, M., Chen, Q., Yan, S.: Network in network. In: International Conference on Learning Representations (ICLR 2014), Banff, pp. 1–10 (2014)

    Google Scholar 

  19. Liu, Z., Pan, Q., Dezert, J., Han, J.W., He, Y.: Classifier fusion with contextual reliability evaluation. IEEE Trans. Cybern. 48(5), 1605–1618 (2018)

    Article  Google Scholar 

  20. Minary, P., Pichon, F., Mercier, D., Lefevre, E., Droit, B.: Face pixel detection using evidential calibration and fusion. Int. J. Approximate Reasoning 91, 202–215 (2017)

    Article  MathSciNet  Google Scholar 

  21. Sakaguchi, K., Post, M., Van Durme, B.: Efficient elicitation of annotations for human evaluation of machine translation. In: Proceedings of the Ninth Workshop on Statistical Machine Translation, Baltimore, pp. 1–11 (2014)

    Google Scholar 

  22. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: Artificial Intelligence and Statistics, Florida, pp. 448–455 (2009)

    Google Scholar 

  23. Salakhutdinov, R., Tenenbaum, J.B., Torralba, A.: Learning with hierarchical-deep models. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1958–1971 (2012)

    Article  Google Scholar 

  24. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  25. Tong, Z., Gao, J., Zhang, H.: Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks. Constr. Build. Mater. 146, 775–787 (2017)

    Article  Google Scholar 

  26. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103, New York (2008)

    Google Scholar 

  27. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Xu, P., Davoine, F., Zha, H., Denœux, T.: Evidential calibration of binary SVM classifiers. Int. J. Approximate Reasoning 72, 55–70 (2016)

    Article  MathSciNet  Google Scholar 

  29. Yager, R.R., Liu, L.: Classic Works of the Dempster-Shafer Theory of Belief Functions, vol. 219. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-44792-4

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Denœux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, Z., Xu, P., Denœux, T. (2019). ConvNet and Dempster-Shafer Theory for Object Recognition. In: Ben Amor, N., Quost, B., Theobald, M. (eds) Scalable Uncertainty Management. SUM 2019. Lecture Notes in Computer Science(), vol 11940. Springer, Cham. https://doi.org/10.1007/978-3-030-35514-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35514-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35513-5

  • Online ISBN: 978-3-030-35514-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics