Skip to main content

A Verified Specification of TLSF Memory Management Allocator Using State Monads

  • Conference paper
  • First Online:
Dependable Software Engineering. Theories, Tools, and Applications (SETTA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11951))

Abstract

Formal verification of real-time services is important because they are usually associated with safety-critical systems. In this paper, we present a verified Two-Level Segregated Fit (TLSF) memory management model. TLSF is a dynamic memory allocator and is designed for real-time operating systems. We formalize the specification of TLSF algorithm based on the client requirements. The specification contains both functional correctness of allocation and free services and invariants and constraints of the global memory state. Then we implement an abstract TLSF memory allocator using state monads in Isabelle/HOL. The allocator model is built from a high-level view and the details of data structures are simplified but it covers all the behavioral principles and procedures of a concrete TLSF implementation. Finally, we verify that our TLSF model is correct w.r.t. the specification using a verification condition generator (VCG) and verification tools in Isabelle/HOL.

This work has been supported in part by the National Natural Science Foundation of China (NSFC) under the Grant No. 61872016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. TLSF: Memory allocator real time embedded systems. http://www.gii.upv.es/tlsf/

  2. Masmano, M., Ripoll, I., Crespo, A., Real, J.: TLSF: a new dynamic memory allocator for real-time systems. In: Proceedings of the 16th Euromicro Conference on Real-Time Systems, ECRTS 2004, Catania, Italy, 2004, pp. 79–88.https://doi.org/10.1109/EMRTS.2004.1311009

  3. Masmano, M., Ripoll, I., Real, J., Crespo, A., Wellings, A.J.: Implementation of a constant time dynamic storage allocator. Softw. Pract. Exp. 38, 995–1026 (2008). https://doi.org/10.1002/spe.858

    Article  Google Scholar 

  4. Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 167–182. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_16

    Chapter  Google Scholar 

  5. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  6. Saraswat, V.A., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory models. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), pp. 161–172. ACM (2007)

    Google Scholar 

  7. Yu, D., Hamid, N.A., Shao, Z.: Building Certified libraries for PCC: dynamic storage allocation. In: Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 363–379. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36575-3_25

    Chapter  Google Scholar 

  8. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for verifying program transformations. J. Autom. Reason. 41(1), 1–31 (2008)

    Article  MathSciNet  Google Scholar 

  9. Tews, H., Völp, M., Weber, T.: Formal memory models for the verification of low-level operating-system code. J. Autom. Reason. 42(2), 189–227 (2009)

    Article  Google Scholar 

  10. Gallardo, M.d.M., Merino, P., Sanán, D.: Model checking dynamic memory allocation in operating systems. J. Autom. Reason. 42(2), 229–264 (2009)

    Article  MathSciNet  Google Scholar 

  11. Ševčík, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: CompCertTSO: a verified compiler for relaxed-memory concurrency. J. ACM (JACM) 60(3), 22:1–22:50 (2013)

    Article  Google Scholar 

  12. Mansky, W., Garbuzov, D., Zdancewic, S.: An axiomatic specification for sequential memory models. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 413–428. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_24

    Chapter  Google Scholar 

  13. Vaynberg, A., Shao, Z.: Compositional verification of a baby virtual memory manager. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 143–159. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35308-6_13

    Chapter  Google Scholar 

  14. Gu, R., et al.: CertiKOS: an extensible architecture for building certified concurrent OS kernels. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, GA, pp. 653–669. USENIX Association (2016)

    Google Scholar 

  15. Klein, G., et al.: seL4: formal verification of an OS kernel. In: 22nd ACM SIGOPS Symposium on Operating Systems Principles (SOSP), pp. 207–220. ACM Press (2009)

    Google Scholar 

  16. Klein, G., Tuch, H.: Towards verified virtual memory in L4. In: TPHOLs Emerging Trends, Park City, Utah, USA, 16 pages, September 2004

    Google Scholar 

  17. Alkassar, E., Schirmer, N., Starostin, A.: Formal pervasive verification of a paging mechanism. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 109–123. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_9

    Chapter  MATH  Google Scholar 

  18. Blanchard, A., Kosmatov, N., Lemerre, M., Loulergue, F.: A case study on formal verification of the anaxagoros hypervisor paging system with frama-C. In: Núñez, M., Güdemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 15–30. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19458-5_2

    Chapter  Google Scholar 

  19. Bolignano, P., Jensen, T., Siles, V.: Modeling and abstraction of memory management in a hypervisor. In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 214–230. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7_13

    Chapter  Google Scholar 

  20. Su, W., Abrial, J., Pu, G., Fang, B.: Formal development of a real-time operating system memory manager. In: 2015 20th International Conference on Engineering of Complex Computer Systems (ICECCS), Gold Coast, QLD, pp. 130–139 (2015). https://doi.org/10.1109/ICECCS.2015.24

  21. Fang, B., Sighireanu, M.: Hierarchical shape abstraction for analysis of free list memory allocators. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 151–167. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_9

    Chapter  Google Scholar 

  22. Fang, B., Sighireanu, M.: A refinement hierarchy for free list memory allocators. In: Proceedings of the 2017 ACM SIGPLAN International Symposium on Memory Management, pp. 104–114. ACM (2017)

    Google Scholar 

  23. Fang, B., Sighireanu, M., Pu, G., Su, W., Abrial, J.R., Yang, M., Qiao, L.: Formal modelling of list based dynamic memory allocators. Sci. China Inf. Sci. 61(12), 103–122 (2018)

    Article  Google Scholar 

  24. Marti, N., Affeldt, R., Yonezawa, A.: Formal verification of the heap manager of an operating system using separation logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 400–419. Springer, Heidelberg (2006). https://doi.org/10.1007/11901433_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhao, Y., Sanan, D., Qiao, L., Zhang, J. (2019). A Verified Specification of TLSF Memory Management Allocator Using State Monads. In: Guan, N., Katoen, JP., Sun, J. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2019. Lecture Notes in Computer Science(), vol 11951. Springer, Cham. https://doi.org/10.1007/978-3-030-35540-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35540-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35539-5

  • Online ISBN: 978-3-030-35540-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics