
Gliders2d: Source Code Base for
RoboCup 2D Soccer Simulation League

Mikhail Prokopenko1,2 and Peter Wang2

1 Complex Systems Research Group, Faculty of Engineering and IT
The University of Sydney, NSW 2006, Australia
mikhail.prokopenko@sydney.edu.au

2 Data Mining, CSIRO Data61, PO Box 76, Epping, NSW 1710, Australia

Abstract. We describe Gliders2d, a base code release for Gliders, a soccer simulation team which won
the RoboCup Soccer 2D Simulation League in 2016. We trace six evolutionary steps, each of which
is encapsulated in a sequential change of the released code, from v1.1 to v1.6, starting from agent2d-
3.1.1 (set as the baseline v1.0). These changes improve performance by adjusting the agents’ stamina
management, their pressing behaviour and the action-selection mechanism, as well as their positional
choice in both attack and defense, and enabling riskier passes. The resultant behaviour, which is suffi-
ciently generic to be applicable to physical robot teams, increases the players’ mobility and achieves a
better control of the field. The last presented version, Gliders2d-v1.6, approaches the strength of Glid-
ers2013, and outperforms agent2d-3.1.1 by four goals per game on average. The sequential improve-
ments demonstrate how the methodology of human-based evolutionary computation can markedly boost
the overall performance with even a small number of controlled steps.

1 Introduction

The RoboCup Soccer 2D Simulation League contributes to the overall RoboCup initiative, sharing its in-
spirational Millennium challenge: producing a team of fully autonomous humanoid soccer players capable
of winning a soccer game against the 2050 FIFA World Cup holder, while complying with the official
FIFA rules [1]. Over the years, the 2D Simulation League made several important advances in autonomous
decision-making under constraints, flexible tactical planning, collective behaviour and teamwork, communi-
cation and coordination, as well as opponent modelling and adaptation [2,3,4,5,6,7,8,9,10]. These advances
are to a large extent underpinned by the standardisation of many low-level behaviours, world model up-
dates and debugging tools, captured by several notable base code releases, offered by “CMUnited” team
from Carnegie Mellon University (USA) [11,12], “UvA Trilearn” team from University of Amsterdam (The
Netherlands) [13], “MarliK” team from University of Guilan (Iran) [14], and “HELIOS” team from AIST
Information Technology Research Institute (Japan) [15]. The latter release in 2010 included a number of
components:

– librcsc-4.0.0: a base library for the RoboCup Soccer Simulator (RCSS);
– agent2d-3.0.0: a base source code for a team;
– soccerwindow2-5.0.0: a viewer and a visual debugger program for RCSS;
– fedit2-2.0.0: a team formation editor for agent2d.

As a result, almost 80% of the League’s teams eventually switched their code base to agent2d over the next
few years [9]. The 2016 champion team, Gliders2016 [16,9], was also based on the well-developed code
base of agent2d-3.1.1 [15], and fragments of MarliK source code [14], all written in C++.

ar
X

iv
:1

81
2.

10
20

2v
1

 [
cs

.M
A

]
 2

6
D

ec
 2

01
8

2 Prokopenko and Wang

The winning approach developed by Gliders combined human innovation and artificial evolution, fol-
lowing the methodologies of guided self-organisation [17,18,19,20] and human-based evolutionary compu-
tation (HBEC). The latter comprises a set of evolutionary computation techniques that incorporate human
innovation [21,22]. This fusion allowed us to optimise several components, including an action-dependent
evaluation function proposed in Gliders2012 [23], a particle-swarm based self-localisation method and tac-
tical interaction networks introduced in Gliders2013 [24,25,26,27,28], a new communication scheme and
dynamic tactics with Voronoi diagrams utilised by Gliders2014 [29], bio-inspired flocking behaviour in-
corporated within Gliders2015 [30], and opponent modelling diversified in Gliders2016 [16]. The overall
framework achieved a high level of tactical proficiency ensuring players’ mobility and the overall control
over the soccer field.

In this paper, we describe a base code release for Gliders, called Gliders2d, version v1, with 6 sequential
changes which correspond to 6 evolutionary HBEC steps, from v1.1 to v1.6. Since Gliders2d release is
based on agent2d, the version Gliders2d-v1.0 is identical to agent2d-3.1.1 (apart from the team name), but
every next step includes a new release. It is important to point out that Gliders2d is an evolutionary branch
separate from the (Gliders2012 — Gliders2016) branch. Thus, the final version of the presented release,
Gliders2d-v1.6, is neither a subset not superset of any of Gliders2012 — Gliders2016 teams. However, as
a point of reference, we note that Gliders2d-v1.6 has a strength approaching that of Gliders2013 [24], and
future releases will improve the performance further.

Our objectives in making this first release are threefold: (a) it includes several important code com-
ponents which explain and exemplify various approaches taken and integrated within the champion team
Gliders2016; (b) it illustrates the HBEC methodology by showing some of the utilised primitives, while
explicitly tracing the resultant performance (i.e., the fitness) for each sequential step from v1.1 to v1.6; (c)
it demonstrates how one can make substantial advances, starting with the standard agent2d code, with only
a small number of controlled steps. It may also serve as a brief tutorial that may help new teams in making
the first steps within the league, using the available base code.

2 Methodology and Results

The HBEC approach evolves performance across an artificial “generation”, using an automated evaluation
of the fitness landscape, while the team developers innovate and recombine various behaviours. The muta-
tions are partially automated. On the one hand, the development effort translates human expertise into novel
behaviours and tactics. On the other hand, the automated evaluation platform, utilised during the develop-
ment of Gliders, and Gliders2d in particular, leverages the power of modern supercomputing in exploring
the search-space.

Each solution, represented as the team source code, can be interpreted as a “genotype”, encoding the en-
tire team behaviour in a set of “design points”. A design point, in the context of a data-farming experiment,
describes a specific combination of input parameters [31], defining either a single parameter (e.g., pressing
level), complex multi-agent tactics (e.g., a set of conditional statements shaping a positioning scheme for
several players), or multi-agent communication protocols [9,10,32].

While some design points are easy to vary, others may be harder to mutate and/or recombine due to
their internal structure. For example, a specific tactic (design point), created by a team developer, may
be implemented via several conditional statements each of which comprises a condition and an action,
involving multiple parameters and primitives (see next subsections for examples). These components can
then be mutated and recombined as part of the genotype.

The solutions are evaluated against a specific opponent, over thousands of games played for each gen-
eration. In order to maintain coherence of the resultant code, which evolves against different opponents in

Gliders2d: Source Code Base 3

parallel, auxiliary conditions switch the corresponding parts of design points on and off for specific op-
ponents [9], in an analogy to epigenetic programming [33]. The fitness function is primarily based on the
average goal difference, with the average points as a tie-breaker, followed by the preference for a lower
standard error.

The main thread in the evolutionary branch described in this release aims to ensure a better control
of the soccer field, by different means: (i) stamina management with higher dash power rates; (ii) more
intense pressing of the ball possessing opponent; (iii) actions’ evaluation aimed at delivering the ball to
points stretching the opposition most; (iv) attacking players positioning to maximise their ball reachability
potential; (v) defending players positioning to minimise the ball reachability potential of the opponents; (vi)
risky passes. These improvements may in general be applied to robotic teams in physical RoboCup leagues.

All the changes in Gliders2d are marked with

// G2d: <brief comment>

For example, setting the role of the agent based on its uniform number is done as follows:

// G2d: role
int role = Strategy::i().roleNumber(wm.self().unum());

while retrieving the opponent name is achieved in this fashion:

// G2d: to retrieve opp team name
bool helios2018 = false;
if (wm.opponentTeamName().find("HELIOS2018") != std::string::npos)

helios2018 = true;

In tracing the relative performance of Gliders2d from v1.1 to v1.6 we used three benchmark teams:
agent2d-3.1.1 itself [15], Gliders2013 [24], and the current world champion team, HELIOS2018 [34]. For
each sequential step, 1000 games were played against the benchmarks. Against agent2d, the goal difference
achieved by Gliders2d-v1.6 improves from zero to 4.2. Against HELIOS2018, the goal difference improves
from −12.73 to −4.34. Finally, against Gliders2013, the goal difference improves from −5.483 to −0.212,
achieving near-parity. Tables 1, 2, and 3 summarise the performance dynamics, including the overall points
for and against, goals scored and conceded, the goal difference, and the standard error of the mean.

2.1 Gliders2d v1.1: Stamina management

The first step in improving upon agent2d performance, along the released evolutionary branch, is adding
adjustments to the agents’ stamina management (confined to a single source file strategy.cpp). Specif-
ically, there are four additional assignments of the maximal dash power in certain situations:

// G2d: run to offside line
else if (wm.ball().pos().x > 0.0

&& wm.self().pos().x < wm.offsideLineX()
&& fabs(wm.ball().pos().x - wm.self().pos().x) < 25.0

)
dash_power = ServerParam::i().maxDashPower();

// G2d: defenders
else if (wm.ball().pos().x < 10.0

&& (role == 4 || role == 5 || role == 2 || role == 3)
)

dash_power = ServerParam::i().maxDashPower();

4 Prokopenko and Wang

// G2d: midfielders
else if (wm.ball().pos().x < -10.0

&& (role == 6 || role == 7 || role == 8)
)

dash_power = ServerParam::i().maxDashPower();

// G2d: run in opp penalty area
else if (wm.ball().pos().x > 36.0

&& wm.self().pos().x > 36.0
&& mate_min < opp_min - 4

)
dash_power = ServerParam::i().maxDashPower();

This fragment of the source code demonstrates how these specific situations are described through
conditions constraining the ball position, the agent position and its role, the offside line, and the minimal
intercept cycles for the Gliders2d team (mate_min) and the opponent team (opp_min).

Such constraints can be evolved by mutation or recombination of primitives (argument (op) X),
where X is a constraint, wm.ball().pos().x is the argument, and (op) is a relational operator, e.g.,
<, >, ==, and so on. The action form may vary from a simple single assignment (the maximal dash power
in this case), to a block of code.

Adding these four conditions increased the goal difference against HELIOS2018 from -12.729 to -6.868,
and against Gliders2013 from -5.483 to -2.684.

2.2 Gliders2d v1.2: Pressing

The second step along this evolutionary branch is adding adjustments to the agents’ pressing behaviour
(confined to a single source file bhv_basic_move.cpp). The pressing level is expressed as the
number of cycles which separate the minimal intercept cycles by the agent (self_min) and the fastest
opponent (opp_min). More precisely, the intercept behaviour forcing the agent to press the opponent with
the ball is triggered when self_min < opp_min + pressing. In agent2d the pressing level is not
distinguished as a variable, being hard-coded as 3 cycles, and making it an evolvable variable is an example
of a simple innovation. Specifically, there are four assignments of the pressing level, tailored to different
opponent teams, agent roles and their positions on the field, as well as the ball location:

// G2d: pressing
int pressing = 13;

if (role >= 6 && role <= 8 && wm.ball().pos().x > -30.0
&& wm.self().pos().x < 10.0)
pressing = 7;

if (fabs(wm.ball().pos().y) > 22.0 && wm.ball().pos().x < 0.0
&& wm.ball().pos().x > -36.5 && (role == 4 || role == 5))
pressing = 23;

if (helios2018)
pressing = 4;

if (! wm.existKickableTeammate()
&& (self_min <= 3

|| (self_min <= mate_min
&& self_min < opp_min + pressing)

)
)

{
Body_Intercept().execute(agent);
...

}

Gliders2d: Source Code Base 5

Again, adding these four evolved conditions increased the goal difference against agent2d from near-
zero to 1.288, against HELIOS2018 from -6.868 to -6.476 (this increase is within the standard error of the
mean), and against Gliders2013 from -2.684 to -1.147.

2.3 Gliders2d v1.3: Evaluator

The third step modifies the action evaluator, following the approach introduced in Gliders2012 [23], which
diversified the single evaluation metric of agent2d by considering multiple points as desirable states. The
action-dependent evaluation mechanism is described in detail in [23,16], and the presented release includes
its implementation (source files sample_field_evaluator.cpp and action_chain_graph).

In particular, a new variable, opp_forward, is introduced, counting the number of non-goalie oppo-
nents in a sector centred on the agent and extending to the points near the opponent’s goal posts:

// G2d: number of direct opponents
int opp_forward = 0;

Vector2D egl (52.5, -8.0);
Vector2D egr (52.5, 8.0);
Vector2D left = egl - wm.self().pos();
Vector2D right = egr - wm.self().pos();

Sector2D sector(wm.self().pos(), 0.0, 10000.0, left.th(), right.th());

for (PlayerPtrCont::const_iterator of = wm.opponentsFromSelf().begin();
of != wm.opponentsFromSelf().end(); ++of)

{
if (sector.contains((*of)->pos()) && !((*of)->goalie()))

opp_forward++;
}

The single evaluation metric of agent2d is invoked when there are no opponents in this sector, or when the
ball is located within (or close to) the own half:

if (wm.ball().pos().x < depth || opp_forward == 0)
{

// stay with best point = opp goal
}

Otherwise, the logic enters into a sequence of conditions (marked in the released code), identifying the
“best” point out of several possible candidates offered by Voronoi diagrams. A Voronoi diagram is defined
as the partitioning of a plane with n points into n convex polygons, so that each polygon contains exactly
one point, while every point in the given polygon is closer to its central point than any other [35]. The best
point is selected to be relatively close to the teammates’ positions, and far from the opponents’ positions.
The distance between the identified best point and the future ball location, attainable by the action under
consideration, is chosen as the evaluation result:

double weight = 1.0;
if (wm.ball().pos().x > 35.0)

weight = 0.3;

double point = state.ball().pos().x * weight;
...
point += std::max(0.0, 40.0 - best_point.dist(state.ball().pos()));

The condition scaling the initial assignment of the point’s value, by weight, is another example of a simple
mutation.

6 Prokopenko and Wang

The action-dependent evaluation mechanism increased the goal difference against agent2d from 1.288
to 1.616, while not providing a notable improvements against the two other benchmarks, as it is applicable
in attacking situations which are rare in these match-ups at this stage.

2.4 Gliders2d v1.4: Positioning

To make a better use of the new field evaluator, the positioning scheme of the players is adjusted by selecting
points according to suitably constructed Voronoi diagrams. For example, a Voronoi diagram may partition
the field according to the positions of the opponent players; the candidate location points can be chosen
among Voronoi vertices, as well as among the points located at intersections between Voronoi segments
and specific lines, e.g., offside line; subject to certain constraints, as illustrated in [29]. All the constrained
conditions are evolvable. A small fragment of the new code, fully contained in source file strategy.cpp,
is below:

// G2d: Voronoi diagram
...
VoronoiDiagram vd;
...
std::vector<Vector2D> OffsideSegm_tmpcont;

for (PlayerPtrCont::const_iterator o = wm.opponentsFromSelf().begin();
o != wm.opponentsFromSelf().end(); ++o)

{
...
vd.addPoint((*o)->pos());

}
...
vd.compute();
...
for (VoronoiDiagram::Segment2DCont::const_iterator

p = vd.segments().begin(), end = vd.segments().end();
p != end; ++p)

{
Vector2D si = (*p).intersection(offsideLine);
if (si.isValid() && fabs(si.y) < 34.0 && fabs(si.x) < 52.5)
{

OffsideSegm_tmpcont.push_back(si);
}

}

Once the container with the candidate points is filled, some of the players (three forwards) are assigned to
the most promising points.

The positioning based on Voronoi diagrams increased the goal difference against agent2d from 1.616 to
2.387, again maintaining the performance against the two other benchmarks.

2.5 Gliders2d v1.5: Formations

This step did not change any of the source code files — instead the formation files, specified in configura-
tions such as defense-formation.conf, offense-formation.conf, etc. were modified with
fedit2. This approach, pioneered in the Simulation League by [36,37], is based on Constrained Delaunay
Triangulation (CDT) [38]. For a set of points in a plane, a Delaunay triangulation achieves an outcome such
that no point from the set is inside the circumcircle of any triangle. Essentially, CDT divides the soccer field
into a set of triangles, based on the set of predefined ball locations, each of which is mapped to the positions

Gliders2d: Source Code Base 7

of each player. Moreover, when the ball takes any position within a triangle, each player’s position is dy-
namically adjusted during the runtime in a congruent way [36,37,9]. Overall, a formation defined via CDT
is an ordered list of coordinates, and so, in terms of evolutionary computation, mutating and recombining
such a list can be relatively easily automated and evaluated.

Fig. 1. Example of a Delaunay triangulation, used by defense-formation.conf, produced by fedit2. The triangle
formed by points 106, 108 and 110 is highlighted. When the ball is located at 110, the players are supposed to be located
in the shown positions.

Figure 1 shows a CDT fragment; for example, the point 110, where the ball is located, defines the
following intended positions for the players:

Ball -48.66 22.71
1 -50.72 6.07
2 -46.08 3.12
3 -47.6 10.53
4 -43.58 -3.75
5 -48.49 18.65
6 -44.3 13.29
7 -41.17 5.8
8 -40.32 17.03
9 -21.01 -17.44
10 -19.94 26.01
11 -22.62 5.8

8 Prokopenko and Wang

The released changes in Gliders2d-1.5 formations are aimed at improving the defensive performance,
placing the defenders and midfielders closer to the own goal. A notable performance gain was observed
against all three benchmarks. The goal difference against agent2d increased from 2.387 to 3.210; against
HELIOS2018: from -6.422 to -4.383; and against Gliders2013: from -1.039 to -0.344.

2.6 Gliders2d v1.6: Risky passes

The final step presented in this release introduced risk level, expressed as the number of additional cycles
“granted” to teammates receiving a pass, under a pressure from opponent players potentially intercepting
the pass (strict_check_pass_generator.cpp). If risk level is set to zero, the default passing
behaviour of agent2d is recovered. For positive values of risk the passes are considered as feasible even
if an ideal opponent interceptor gets to the ball trajectory sooner than the intended recipient of the pass.

// G2d: risk passes
int risk = 0;

if (wm.ball().pos().x < wm.offsideLineX()
&& receive_point.x > wm.offsideLineX() + 3.0
&& wm.offsideLineX() - receiver.player_->pos().x < 5.0)

{
if (heliosbase)

risk = 5;
else if (helios2018)

risk = 0;
else

risk = 2;
}

if (M_pass_type == ’T’)
{

if (o_step + risk <= step)
{

...
failed = true;

}
...

}
else
{

if (o_step + risk <= step + (kick_count - 1))
{

failed = true;
}

}
// G2d: risk in opponent check

int risk = 0;

if ((receive_point.x < pass_max_x || fabs(receive_point.y) > pass_min_y)
&& (M_pass_type == ’T’ || M_pass_type == ’L’)
&& fabs(ball_move_angle.degree() - oppDir) > pass_cut
&& fabs(ball_move_angle.degree()) < pass_angle
&& wm.ball().pos().x < wm.offsideLineX()
&& receive_point.x > wm.offsideLineX() + pass_depth)

{
if (heliosbase)

risk = 2;
else

risk = 1;
}

int n_step = (n_turn == 0
? n_turn + n_dash + risk
: n_turn + n_dash + 1); // 1 step penalty for observation delay

Gliders2d: Source Code Base 9

The conditional statements in this fragment include several new variables, such as pass_max_x, pass_min_y,
pass_cut, pass_angle, pass_depth, used in mutating and recombining the conditions.

The addition of risky passes increased the goal difference against agent2d from 3.210 to 4.2; and against
Gliders2013: from -0.344 to -0.212.

Gliders2d Points for Points against Goals scored Goals conceded Goal diff. Std. error

v0.0 (agent2d) 1.384 1.414 2.287 2.289 -0.002 0.040

v1.1 (stamina) 1.345 1.468 2.254 2.290 -0.036 0.049

v1.2 (pressing) 2.161 0.691 2.642 1.355 1.288 0.051

v1.3 (evaluator) 2.252 0.607 2.997 1.381 1.616 0.063

v1.4 (positioning) 2.515 0.367 3.849 1.461 2.387 0.086

v1.5 (formations) 2.785 0.154 3.995 0.785 3.210 0.181

v1.6 (risky passes) 2.840 0.116 5.214 1.014 4.200 0.172

Table 1. Performance evaluation for Gliders2d against agent2d, over ∼1000 games carried out for each version of
Gliders2d against the opponent. The goal difference improves from zero to 4.2, while the average game score improves
from (2.29 : 2.29) to (5.21 : 1.01).

Gliders2d Points for Points against Goals scored Goals conceded Goal diff. Std. error

v0.0 (agent2d) 0.000 3.000 0.123 12.852 -12.729 0.514

v1.1 (stamina) 0.001 2.998 0.231 7.099 -6.868 0.276

v1.2 (pressing) 0.003 2.994 0.248 6.724 -6.476 0.140

v1.3 (evaluator) 0.004 2.992 0.269 6.821 -6.552 0.310

v1.4 (positioning) 0.002 2.996 0.298 6.720 -6.422 0.223

v1.5 (formations) 0.027 2.952 0.273 4.655 -4.383 0.197

v1.6 (risky passes) 0.024 2.961 0.260 4.600 -4.337 0.161

Table 2. Performance evaluation for Gliders2d against HELIOS2018, over ∼1000 games carried out for each version
of Gliders2d against the opponent. The goal difference improves from −12.73 to −4.34, while the average game score
improves from (0.12 : 12.85) to (0.26 : 4.60).

Gliders2d Points for Points against Goals scored Goals conceded Goal diff. Std. error

v0.0 (agent2d) 0.022 2.968 0.569 6.052 -5.483 0.213

v1.1 (stamina) 0.183 2.730 0.596 3.280 -2.684 0.071

v1.2 (pressing) 0.539 2.230 0.613 1.760 -1.147 0.063

v1.3 (evaluator) 0.657 2.109 0.770 1.800 -1.030 0.067

v1.4 (positioning) 0.603 2.160 0.700 1.739 -1.039 0.077

v1.5 (formations) 1.039 1.607 0.700 1.044 -0.344 0.026

v1.6 (risky passes) 1.111 1.527 0.776 0.988 -0.212 0.038

Table 3. Performance evaluation for Gliders2d against Gliders2013, over ∼1000 games carried out for each version
of Gliders2d against the opponent. The goal difference improves from −5.48 to −0.21, while the average game score
improves from (0.57 : 6.05) to (0.78 : 0.99).

10 Prokopenko and Wang

3 Conclusions

In this paper, we described the first version of Gliders2d: a base code release for Gliders (based on agent2d-
3.1.1). We trace six sequential changes aligned with six evolutionary steps. These steps improve the overall
control of the pitch by increasing the players’ mobility through several means: less conservative usage of
the available stamina balance (v1.1); more intense pressing of opponents (v1.2); selecting more diversified
actions (v1.3); positioning forwards in open areas (v1.4); positioning defenders closer to own goal (v1.5);
and considering riskier passes (v1.6).

As has been argued in the past, the simulation leagues enable replicable and robust investigation of
complex robotic systems [39,40]. We believe that the purpose of the RoboCup Soccer Simulation Leagues
(both 2D and 3D) should be to simulate agents based on a futuristic robotic architecture which is not yet
achievable in hardware. Aiming at such a general and abstract robot architecture may help to identify a
standard for what humanoid robots may look like in 2050, the year of the RoboCup Millennium challenge.
This is the reason for focussing, in this release, on the features which can also be used by simulated 3D,
as well as robotic, teams competing in RoboCup, aiming at some of the most general questions: when to
conserve energy (stamina), when to run (pressing), where to kick the ball (actions), where to be on the field
(positioning in attack and defense), and when to take risks (passes). While the provided specific answers
may or may not be widely acceptable, general reasoning along these lines may bring us closer to a new
RoboCup Humanoid Simulation League (HSL). In HSL, the Simulated Humanoid should be defined in a
standard and generalisable way, approaching human soccer-playing behavior [41], while the behavioural
and tactical improvements can be evolved and/or adapted to this standardised architecture.

The location of the released code: http://www.prokopenko.net/gliders2d.html.
The last presented version, Gliders2d-v1.6, is comparable to Gliders2013, achieving the average score of

(0.78 : 0.99) against this benchmark, and outperforms agent2d-3.1.1 with the average score (5.21 : 1.01).
In tracing this evolutionary branch, we illustrated the methodology of human-based evolutionary com-

putation, showing that even a small number of controlled steps can dramatically improve the overall team
performance.

4 Acknowledgments

We thank several members of Gliders team contributing during 2012–2016: David Budden, Oliver Cliff,
Victor Jauregui and Oliver Obst. We are also grateful to participants of the discussion on the future of the
RoboCup Simulation Leagues, in particular to Peter Stone, Patrick MacAlpine, Nuno Lau, Klaus Dorer, and
Daniel Polani.

References

1. Burkhard, H.D., Duhaut, D., Fujita, M., Lima, P., Murphy, R., Rojas, R.: The road to RoboCup 2050. IEEE
Robotics Automation Magazine 9(2) (Jun 2002) 31–38

2. Noda, I., Stone, P.: The RoboCup Soccer Server and CMUnited Clients: Implemented Infrastructure for MAS
Research. Autonomous Agents and Multi-Agent Systems 7(1–2) (July–September 2003) 101–120

3. Riley, P., Stone, P., Veloso, M.: Layered disclosure: Revealing agents’ internals. In Castelfranchi, C., Lesperance,
Y., eds.: Intelligent Agents VII. Agent Theories, Architectures, and Languages — 7th. International Workshop,
ATAL-2000, Boston, MA, USA, July 7–9, 2000, Proceedings. Lecture Notes in Artificial Intelligence. Springer,
Berlin, Berlin (2001)

Gliders2d: Source Code Base 11

4. Stone, P., Riley, P., Veloso, M.: Defining and using ideal teammate and opponent models. In: Proceedings of the
Twelfth Annual Conference on Innovative Applications of Artificial Intelligence. (2000)

5. Butler, M., Prokopenko, M., Howard, T.: Flexible synchronisation within RoboCup environment: A comparative
analysis. In: RoboCup 2000: Robot Soccer World Cup IV, London, UK, Springer (2001) 119–128

6. Reis, L.P., Lau, N., Oliveira, E.: Situation based strategic positioning for coordinating a team of homogeneous
agents. In: Balancing Reactivity and Social Deliberation in Multi-Agent Systems, From RoboCup to Real-World
Applications, London, UK, Springer (2001) 175–197

7. Prokopenko, M., Wang, P.: Relating the entropy of joint beliefs to multi-agent coordination. In Kaminka, G.A.,
Lima, P.U., Rojas, R., eds.: RoboCup 2002: Robot Soccer World Cup VI. Volume 2752 of Lecture Notes in Com-
puter Science., Springer (2003) 367–374

8. Prokopenko, M., Wang, P.: Evaluating team performance at the edge of chaos. In Polani, D., Browning, B.,
Bonarini, A., Yoshida, K., eds.: RoboCup 2003: Robot Soccer World Cup VII. Volume 3020 of Lecture Notes in
Computer Science., Springer (2004) 89–101

9. Prokopenko, M., Wang, P.: Disruptive Innovations in RoboCup 2D Soccer Simulation League: From Cyberoos’98
to Gliders2016. In Behnke, S., Sheh, R., Sariel, S., Lee, D.D., eds.: RoboCup 2016: Robot World Cup XX [Leipzig,
Germany, June 30 - July 4, 2016]. Volume 9776 of Lecture Notes in Computer Science., Springer (2017) 529–541

10. Zuparic, M., Jauregui, V., Prokopenko, M., Yue, Y.: Quantifying the impact of communication on performance in
multi-agent teams. Artificial Life and Robotics 22(3) (Sep 2017) 357–373

11. Stone, P., Asada, M., Balch, T.R., Fujita, M., Kraetzschmar, G.K., Lund, H.H., Scerri, P., Tadokoro, S., Wyeth,
G.: Overview of robocup-2000. In Stone, P., Balch, T.R., Kraetzschmar, G.K., eds.: RoboCup 2000: Robot Soccer
World Cup IV. Volume 2019 of Lecture Notes in Computer Science., Springer (2000) 1–28

12. Stone, P., Riley, P., Veloso, M.: The CMUnited-99 champion simulator team. In Veloso, M., Pagello, E., Kitano, H.,
eds.: RoboCup-99: Robot Soccer World Cup III. Volume 1856 of Lecture Notes in Artificial Intelligence. Springer
Verlag, Berlin (2000) 35–48

13. Kok, J.R., Vlassis, N., Groen, F.: UvA Trilearn 2003 team description. In Polani, D., Browning, B., Bonarini, A.,
Yoshida, K., eds.: Proceedings CD RoboCup 2003, Padua, Italy, Springer-Verlag (July 2003)

14. Tavafi, A., Nozari, N., Vatani, R., Yousefi, M.R., Rahmatinia, S., Pirdir, P.: MarliK 2012 Soccer 2D Simulation
Team Description Paper. In: RoboCup 2012 Symposium and Competitions: Team Description Papers, Mexico
City, Mexico, June 2012. (2012)

15. Akiyama, H.: Agent2D Base Code. http://www.rctools.sourceforge.jp (2010)
16. Prokopenko, M., Wang, P.and Obst, O., Jaurgeui, V.: Gliders2016: Integrating multi-agent approaches to tactical

diversity. In: RoboCup 2016 Symposium and Competitions: Team Description Papers, Leipzig, Germany, July
2016. (2016)

17. Nehaniv, C., Polani, D., Olsson, L., Klyubin, A.: Evolutionary information-theoretic foundations of sensory ecol-
ogy: Channels of organism-specific meaningful information. Modeling Biology: Structures, Behaviour, Evolution
(2005) 9–11

18. Prokopenko, M., Gerasimov, V., Tanev, I.: Measuring spatiotemporal coordination in a modular robotic system. In
Rocha, L., Yaeger, L., Bedau, M., Floreano, D., Goldstone, R., Vespignani, A., eds.: Artificial Life X: Proceedings
of The 10th International Conference on the Simulation and Synthesis of Living Systems, Bloomington IN, USA
(2006) 185–191

19. Prokopenko, M., Gerasimov, V., Tanev, I.: Evolving spatiotemporal coordination in a modular robotic system. In
Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.A., Miglino, O., Parisi, D., eds.:
From Animals to Animats 9: 9th International Conference on the Simulation of Adaptive Behavior (SAB 2006),
Rome, Italy, September 25-29 2006. Volume 4095 of Lecture notes in computer science. (2006) 558–569

20. Prokopenko, M.: Guided self-organization: Inception. Volume 9. Springer Science & Business Media (2013)
21. Kosorukoff, A.: Human based genetic algorithm. In: Systems, Man, and Cybernetics, 2001 IEEE International

Conference on. Volume 5., IEEE (2001) 3464–3469
22. Cheng, C.D., Kosorukoff, A.: Interactive one-max problem allows to compare the performance of interactive and

human-based genetic algorithms. In Deb, K., ed.: Genetic and Evolutionary Computation – GECCO 2004: Genetic
and Evolutionary Computation Conference, Seattle, USA, June 26-30, 2004. Springer (2004) 983–993

http://www.rctools.sourceforge.jp

12 Prokopenko and Wang

23. Prokopenko, M., Obst, O., Wang, P., Held, J.: Gliders2012: Tactics with action-dependent evaluation functions. In:
RoboCup 2012 Symposium and Competitions: Team Description Papers, Mexico City, Mexico, June 2012. (2012)

24. Prokopenko, M., Obst, O., Wang, P., Budden, D., Cliff, O.M.: Gliders2013: Tactical analysis with information dy-
namics. In: RoboCup 2013 Symposium and Competitions: Team Description Papers, Eindhoven, The Netherlands,
June 2013. (2013)

25. Budden, D., Prokopenko, M.: Improved particle filtering for pseudo-uniform belief distributions in robot localisa-
tion. In: RoboCup 2013: Robot Soccer World Cup XVII, Springer (2013)

26. Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Coherent information structure in complex computation. Theory in
Biosciences 131 (2012) 193–203

27. Cliff, O.M., Lizier, J., Wang, R., Wang, P., Obst, O., Prokopenko, M.: Towards quantifying interaction networks in
a football match. In Behnke, S., Veloso, M., Visser, A., Xiong, R., eds.: RoboCup 2013: Robot Soccer World Cup
XVII, Springer (2013) 1–12

28. Cliff, O.M., Lizier, J.T., Wang, X.R., Wang, P., Obst, O., Prokopenko, M.: Quantifying long-range interactions and
coherent structure in multi-agent dynamics. Artificial Life 23(1) (2017) 34–57

29. Prokopenko, M., Obst, O., Wang, P.: Gliders2014: Dynamic Tactics with Voronoi Diagrams. In: RoboCup 2014
Symposium and Competitions: Team Description Papers, Joao Pessoa, Brazil, July 2014. (2014)

30. Prokopenko, M., Wang, P., Obst, O.: Gliders2015: Opponent avoidance with bio-inspired flocking behaviour. In:
RoboCup 2015 Symposium and Competitions: Team Description Papers, Hefei, China, July 2015. (2015)

31. Cioppa, T.M., Lucas, T.W.: Efficient nearly orthogonal and space-filling latin hypercubes. Technometrics 49(1)
(2007) 45–55

32. Gabel, T., Klöppner, P., Godehardt, E., Tharwat, A.: Communication in soccer simulation: On the use of wiretap-
ping opponent teams. In: RoboCup 2018: Robot Soccer World Cup XXII, Springer (2018)

33. Tanev, I., Yuta, K.: Epigenetic programming: Genetic programming incorporating epigenetic learning through
modification of histones. Information Sciences 178(23) (2008) 4469–4481

34. Nakashima, T., Akiyama, H., Suzuki, Y., Ohori, A., Fukushima, T.: HELIOS2018: Team Description Paper. In:
RoboCup 2018 Symposium and Competitions: Team Description Papers, Montreal, Canada, July 2018. (2018)

35. Dylla, F., Ferrein, A., Lakemeyer, G., Murray, J., Obst, O., Röfer, T., Schiffer, S., Stolzenburg, F., Visser, U.,
Wagner, T.: Approaching a formal soccer theory from the behavior specification in robotic soccer. In Dabnicki, P.,
Baca, A., eds.: Computers in Sport. Bioengineering. WIT Press (2008) 161–186

36. Akiyama, H., Noda, I.: Multi-agent positioning mechanism in the dynamic environment. In Visser, U., Ribeiro,
F., Ohashi, T., Dellaert, F., eds.: RoboCup 2007: Robot Soccer World Cup XI. Springer, Berlin, Heidelberg (2008)
377–384

37. Akiyama, H., Shimora, H.: Helios2010 team description. In: RoboCup 2010: Robot Soccer World Cup XIV.
Volume 6556 of Lecture Notes in Computer Science., Springer (2011)

38. Chew, L.P.: Constrained Delaunay Triangulations. Algorithmica 4(1-4) (1989) 97–108
39. Budden, D.M., Wang, P., Obst, O., Prokopenko, M.: Robocup simulation leagues: Enabling replicable and robust

investigation of complex robotic systems. IEEE Robotics and Automation Magazine 22(3) (2015) 140–146
40. Prokopenko, M., Wang, P., Marian, S., Bai, A., Li, X., Chen, X.: Robocup 2d soccer simulation league: Evaluation

challenges. In Akiyama, H., Obst, O., Sammut, C., Tonidandel, F., eds.: RoboCup 2017: Robot World Cup XXI
[Nagoya, Japan, July 27-31, 2017]. Volume 11175 of Lecture Notes in Computer Science., Springer (2018) 325–
337

41. Stone, P., Quinlan, M., Hester, T.: Can robots play soccer? In Richards, T., ed.: Soccer and Philosophy: Beautiful
Thoughts on the Beautiful Game. Volume 51 of Popular Culture and Philosophy. Open Court Publishing Company
(2010) 75–88

	Gliders2d: Source Code Base for RoboCup 2D Soccer Simulation League

