
On Strict (Outer-)Confluent Graphs

Henry Förster1[0000−0002−1441−4189], Robert Ganian2[0000−0002−7762−8045],
Fabian Klute2[0000−0002−7791−3604], and Martin Nöllenburg2[0000−0003−0454−3937]

1 University of Tübingen, Tübingen, Germany
foersth@informatik.uni-tuebingen.de

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{rganian,fklute,noellenburg}@ac.tuwien.ac.at

Abstract. A strict confluent (SC) graph drawing is a drawing of a graph
with vertices as points in the plane, where vertex adjacencies are rep-
resented not by individual curves but rather by unique smooth paths
through a planar system of junctions and arcs. If all vertices of the graph
lie in the outer face of the drawing, the drawing is called a strict outer-
confluent (SOC) drawing. SC and SOC graphs were first considered by
Eppstein et al. in Graph Drawing 2013. Here, we establish several new
relationships between the class of SC graphs and other graph classes,
in particular string graphs and unit-interval graphs. Further, we extend
earlier results about special bipartite graph classes to the notion of strict
outerconfluency, show that SOC graphs have cop number two, and es-
tablish that tree-like (∆-)SOC graphs have bounded cliquewidth.

1 Introduction

Confluent drawings of graphs are geometric graph representations in the Eu-
clidean plane, in which vertices are mapped to points, but edges are not drawn
as individually distinguishable geometric objects. Instead, an edge between two
vertices u and v is represented by a smooth path between the points of u and v
through a crossing-free system of arcs and junctions. Since multiple edge repre-
sentations may share some arcs and junctions of the drawing, this allows dense
and non-planar graphs to be drawn in a plane way (e.g., see Fig. 2 for a confluent
drawing of K5). Hence confluent drawings can be seen as theoretical counter-
part of heuristic edge bundling techniques, which are frequently used in network
visualizations to reduce visual clutter in layouts of dense graphs [2, 30].

More formally, a confluent drawing D of a graph G = (V,E) consists of a
set of points representing the vertices of G, a set of junction points, and a set
of smooth arcs, such that each arc starts and ends at either a vertex point or
a junction, no two arcs intersect (except at common endpoints), and all arcs
meeting in a junction share the same tangent line in the junction point. There
is an edge (u, v) ∈ E if and only if there is a smooth path from u to v in D not
passing through any other vertex.

A poster containing some of the results of this paper was presented at GD 2017.
Robert Ganian acknowledges support by the Austrian Science Fund (FWF, project
P31336) and is also affiliated with FI MUNI, Brno, Czech Republic.

ar
X

iv
:1

90
8.

05
34

5v
1 

 [
cs

.C
G

] 
 1

4 
A

ug
 2

01
9



2 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

alternation

strict-outerconfluent

bipartite permutation ∩ domino-free

bipartite permutation

strict bipartite outerconfluent

distance-hereditary

string

strict-confluent

circle-trapezoid

outer-string

subtree-filament

circular arc

trapezoid

series-parallel

pseudo-splitchordal

polygon-circle

∆-confluent

comparability

circle [29]

〈1752〉

[12]

〈1388〉

D

[40]

[38]

D

D

D

〈1450〉

〈600, 1450〉

D

D

D

D

D

〈600〉

〈600〉

Thm 1

Thm 2

Thm 5

D

〈1348〉 co-comparabilityinterval-filament
D D

chordal ∪
co-chordalunit interval

Thm 3

D

unit interval

[23]

Fig. 1: Inclusions among graph classes related to SOC graphs. Arrows point from
sub- to superclass, where edge label ‘D’ marks an inclusion by definition. Fat
arrows are inclusions shown in this paper and are labelled with the corresponding
theorem. Green boxes are confluent graph classes. Red, dashed boxes are classes
that are incomparable to SOC graphs. Orange boxes are classes that are potential
superclasses of SOC graphs. Blue boxes are potential subclasses of the SOC
graphs. The numbers in 〈·〉 indicate references of graphclasses.org.

Confluent drawings were introduced by Dickerson et al. [9], who identified
classes of graphs that admit or do not admit confluent drawings. Subsequently,
the notions of strong and tree confluency have been introduced [32], as well as
∆-confluency [12]. Confluent drawings have further been used for drawings of
layered graphs [13] and Hasse diagrams [15].

Eppstein et al. [14] defined the class of strict confluent (SC) drawings, which
require that every edge of the graph must be represented by a unique smooth
path and that there are no self-loops. They showed that for general graphs it is
NP-complete to decide whether an SC drawing exists. An SC drawing is called
strict outerconfluent (SOC) if all vertices lie on the boundary of a (topological)
disk that contains the SC drawing. For graphs with a given cyclic vertex order,
Eppstein et al. [14] presented a constructive efficient algorithm for testing the ex-
istence of an SOC drawing. Without a given vertex order, neither the recognition
complexity nor a characterization of such graphs is known.

We approach the characterization problem by comparing the SOC graph
class with a hierarchy of classes of intersection graphs. In general a geometric
intersection graph G = (V,E) is a graph with a bijection between the vertices V
and a set of geometric objects such that two objects intersect if and only if the
corresponding vertices are adjacent. Common examples include interval graphs,
string graphs [11] and circle graphs [17]. Since confluent drawings make heavy
use of intersecting curves to represent edges in a planar way, it seems natural to
ask what kind of geometric intersection models can represent a confluent graph.

graphclasses.org


On Strict (Outer-)Confluent Graphs 3

Contributions. After introducing basic definitions and properties in Section 2,
we show in Section 3 that SC and SOC graphs are, respectively, string and
outerstring graphs [34]. Section 4 shows that every unit interval graph [36, 39]
can be drawn strict confluent. In Section 5, we consider the so-called strict
bipartite-outerconfluent drawings: by following up on an earlier result of Hui
et al. [32], we show that graphs which admit such a drawing are precisely the
domino-free bipartite permutation graphs. Inspired by earlier work of Gavenčiak
et al. [19], we examine in Section 6 the cop number of SOC graphs and show
that it is at most two. In Appendix E we show that many natural subclasses
of outer-string graphs are incomparable to SOC graphs (see red, dashed boxes
in Fig. 1). More specifically, we show that circle [17], circular-arc [31], series-
parallel [37], chordal [20], co-chordal [4], and co-comparability [25] graphs are all
incomparable to SOC graphs. This list may help future research by excluding a
series of natural candidates for sub- and super-classes of SOC graphs. Finally,
in Section 7, we show that the cliquewidth of so-called tree-like ∆-SOC graphs
is bounded by a constant, generalizing a previous result of Eppstein et al. [12].

2 Preliminaries

A confluent diagram D = (N, J, Γ ) in the plane R2 consists of a set N of points
called nodes, a set J of points called junctions and a set Γ of simple smooth
curves called arcs whose endpoints are in J ∪ N . Further, two arcs may only
intersect at common endpoints. If they intersect in a junction they must share
the same tangent line, see Fig 2.

u
v

w

x

y

j i

k
`

p

Fig. 2: A strict outerconfluent
diagram representing K5. Nodes
are disks, junctions are squares.

Let D = (N, J, Γ ) be a confluent diagram
and let u, v ∈ N be two nodes. A uv-path
p = (γ0, . . . , γk) in D is a sequence of arcs
γ0 = (u, j1), γ1 = (j1, j2), . . . , γk = (jk, v) ∈
Γ such that j1, . . . jk are junctions and p is a
smooth curve. In Fig. 2 the unique uy-path
passes through junctions i, j, k. If there is at
most one uv-path for each pair of nodes u, v
in N and if there are no self-loops, i.e., no
uu-path for any u ∈ N , we say that D is a
strict confluent diagram. The uniqueness of
uv-paths and the absence of self-loops imply
that every uv-path is actually a path in the
graph-theoretic sense, where no vertex is visited twice. We further define P (D)
as the set of all smooth paths between all pairs of nodes in N . Let p ∈ P (D) be
a path and j ∈ J a junction in D, then we write j ∈ p, if p passes through j.

As observed by Eppstein et al. [14], we may assume that every junction is
a binary junction, where exactly three arcs meet such that the three enclosed
angles are 180◦, 180◦, 0◦. In other words two arcs from the same direction merge
into the third arc, or, conversely, one arc splits into two arcs. A (strict) con-



4 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

fluent diagram with higher-degree junctions can easily be transformed into an
equivalent (strict) one with only binary junctions.

Let j ∈ J be a binary junction with the three incident arcs γ1, γ2, γ3. Let the
angle enclosed by γ1 and γ2 be 0◦ and the angle enclosed by γ3 and γ1 (or γ2) be
180◦. Then we say that j is a merge-junction for γ1 and γ2 and a split-junction
for γ3. We also say that γ1 and γ2 merge at j and that γ3 splits at j. Given two
nodes u, v ∈ N and a junction j ∈ J we say that j is a merge-junction for u
and v if there is a third node w ∈ N , a uw-path p and a vw-path q such that
j ∈ p and j ∈ q, the respective incoming arcs γp = (jp, j) and γq = (jq, j) are
distinct and the suffix paths of p and q from j to w are equal. Conversely, we
say that a junction j ∈ J is a split-junction for a node u ∈ N if there are two
nodes v, w ∈ N , a uv-path p, and a uw-path q such that j ∈ p and j ∈ q, the
prefix paths of p and q from u to j are equal and the respective subsequent arcs
γp = (j, jp) and γq = (j, jq) are distinct. In Fig. 2, junction i is a merge-junction
for u and v, while it is a split junction for each of w, x, y. Two junctions i, j ∈ J
are called a merge-split pair if i and j are connected by an arc γ and both i and
j are split-junctions for γ; in Fig. 2, junctions i and j form a merge-split pair,
as well as junctions ` and p.

We call an arc γ ∈ Γ essential if we cannot delete γ without changing
adjacencies in the represented graph. We call a confluent diagram D reduced, if
every arc is essential. Notice that this is a different notion than strictness, since
it is possible that in a confluent diagram we find two essential arcs between a
pair of nodes. Without loss of generality we can assume that the nodes of an
outerconfluent diagram are placed on a circle with all arcs and junctions inside
the circle. We can infer a cyclic order π from an outerconfluent diagram D by
walking clockwise around the boundary of the unbounded face and adding the
nodes to π in the order they are visited.

From a confluent diagram D = (N, J, Γ ) we derive a simple, undirected graph
GD = (VD, ED) with VD = N and ED = {(u, v) | ∃uv-path p ∈ P (D)}. We say
D is a confluent drawing of a graph G if G is isomorphic to GD and that G is a
(strict) (outer-)confluent graph if it admits a (strict) (outer-)confluent drawing.

3 Strict (Outer-)Confluent ⊂ (Outer-)String

The class of string graphs [34] contains all graphs G = (V,E) which can be
represented as the intersection graphs of open curves in the plane. We show that
they form a superclass of SC graphs and that every SOC graph is an outer-string
graph [34]. Outer-string graphs are string graphs that can be represented so that
strings lie inside a disk and intersect the boundary of the disk in one endpoint.
Note that strings are allowed to self-intersect and cross each more than once.

Let D = (N, J, Γ ) be a strict confluent diagram. For every node u ∈ N we
construct the junction tree Tu of u, with root u and a leaf for each neighbor v of u
in GD. The interior vertices of Tu are the junctions which lie on the (unique) uv-
paths. The strictness of D implies that Tu is a tree. Observe that every internal
node of Tu has at most two children. Further, every merge-junction for u is a



On Strict (Outer-)Confluent Graphs 5

vertex with one child in Tu, and every split-junction for u has two children. For
every junction j in Tu we can define the sub-tree Tu,j of Tu with root j.

Lemma 1. Let D = (N, J, Γ ) be a strict confluent diagram, let u, v ∈ N be two
nodes and let i, j be two distinct merge-junctions for u, v. Then i is neither an
ancestor nor a descendant of j in Tu (and, by symmetry, in Tv).

To create a string representation of an SC graph we trace the paths of a strict
confluent diagram D = (N, J, Γ ), starting from each node u ∈ N and combine
them into a string representation. Figure 3 shows an example. We traverse the
junction tree for each u ∈ N on the left-hand side of each arc (seen from its root
u) and create a string t(u), the trace of u, with respect to Tu as follows.

Start from u and traverse Tu in left-first DFS order. Upon reaching a leaf
` make a clockwise U-turn and backtrack to the previous split-junction of Tu.
When returning to a split-junction we have two cases. (a) coming from the left
subtree: cross the arc from the left subtree at the junction and descend into the
right subtree. (b) coming from the right subtree: cross the arc to the left subtree
again and backtrack upward in the tree along the existing trace to the previous
split-junction of Tu.

t(u)

t(v) t(u)

t(v)

i i

w

t(w)

w

t(w)

Fig. 3: Two possible configurations for in-
serting a new trace t(u) that meets an ex-
isting trace t(v) at a merge junction i; t(v)
is cut and re-routed.

Finally, at a merge-junction i
with at least one trace from the
other arc merging into i already
drawn: Let v ∈ N such that u and
v merge at i and t(v) is already
tracing the subtree Tu,i = Tv,i. In
this case we temporarily cut open
the part of trace t(v) closest to
t(u), route t(u) through the gap
and let it follow t(v) along Tu,i un-
til it returns to junction i, where
t(u) passes through the gap again.
Since Tu,i = Tv,i this is possible without t(u) intersecting t(v). Now it remains
to reconnect the two open ends of t(v), but this can again be done without any
new intersections by winding t(v) along the “outside” of t(u). See Fig. 3 for
an illustration. If there are multiple traces with this property, they can all be
treated as a single “bundled” trace within Tu,i.

Theorem 1. Every SC graph is a string graph.

Proof. Given an SC graph G = (V,E) with a strict confluent drawing D =
(N, J, Γ ) we construct the traces as described above for every node u ∈ N . In
the following let u, v be two nodes of D. We distinguish three cases.

Case 1 (uv-path in P (D)): We draw t(u) and t(v) as described above. Since
there is a uv-path in P (D) we have to guarantee that t(u) and t(v) intersect at
least once. We introduce crossings at the leaves corresponding to u and v in Tu
and Tv when t(u) and t(v) make a U-turn; see how the trace t(u) intersects t(w)
near the leaf w in Fig. 3.



6 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

Case 2 (No uv-path in P (D) and u, v share no merge-junction): In this case
Tu and Tv are disjoint trees. Traces can meet only at shared junctions and around
leaves, but since t(u) and t(v) trace disjoint trees intersections are impossible.

Case 3 (No uv-path in P (D) and u, v share a merge-junction): First assume u
and v share a single merge-junction i ∈ J and assume t(v) is already drawn when
creating trace t(u). We have to be careful that t(v) and t(u) do not intersect. If
we route the traces at the merge-junction i as depicted in Fig. 3, they visit the
shared subtree Tu,i = Tv,i without intersecting each other.

Now assume u and v share k > 1 merge-junctions j1, . . . , jk ∈ J and u
and v merge at each ji. Consequently we find k shared subtrees T 1, . . . , T k. By
Lemma 1, however, we know that the intersection of these subtrees is empty.
Hence we can treat every merge-junction and its subtree independently as in the
case of a single merge-junction.

These are all the cases how two junction trees can interact. Hence the traces
t(u) and t(v) for nodes u, v ∈ N intersect if and only if there is a uv-path in
P (D) and, equivalently, the edge (u, v) ∈ ED. Further, every trace is a continuous
curve, so this set of traces yields a string representation of G. ut

A construction following the same principle can in fact be used to show:

Theorem 2. Every SOC graph is an outer-string graph.

4 Unit Interval Graphs and SC

In this section we consider so-called unit interval graphs. Let G = (V,E) be a
graph, then G is a unit interval graph if there exists a unit-interval layout ΓUI

of G, i.e. a representation of G where each vertex v ∈ V is represented as an
interval of unit length and edges are given by the intersections of the intervals.

Theorem 3. Every unit-interval graph is an SC graph.

Proof (Sketch). Our proof technique is constructive and describes how to com-
pute a strict confluent diagram D for a given graph G based on its unit-interval
layout ΓUI . Based on the ordering of intervals in ΓUI , we first greedily compute
a set of cliques which are subgraphs of G. In particular, we ensure that the left-
to-right-ordered set of cliques has the property that vertices in a clique are only
incident to vertices in the same clique and to the two neighboring cliques; see
Figure 4(a). We then create an SOC diagram for each clique; see the red, blue
and green layouts of the three cliques in Figure 4(b).

In order to realize the remaining edges we first make the following useful
observation. Let (v1, . . . , vk) denote the vertices of some clique C ordered from
left to right according to ΓUI . Then since all vertices are represented by unit
intervals, if vi is incident to a vertex w in the subsequent clique, also vj must be
incident to w for i < j ≤ k. We use this observation to insert a split junction bi
in the SOC diagram of C such that all vertices with index at least i can access
a smooth arc that connects them with w; see the black arcs in Figure 4(b).



On Strict (Outer-)Confluent Graphs 7

(a) (b)

C1

C3

v1
v4 w1
C2 w5x1x2

v1
v2 v3

v4 x1 x2

d2 d2

b2

Hd3 d3 d4

b3 b4
w1

w2 w3 w4

w5b4b3

br

Fig. 4: (a) A unit interval graph G with a decomposition of its vertices into a
set of cliques as described in the proof of Theorem 3; and (b) a strict confluent
layout of G computed by the algorithm described in the proof of Theorem 3.

We route arcs between cliques Ci and Ci+1 first above clique Ci, then let it
intersect with a line H that passes through all the cliques (which intuitively
inverts the ordering of such arcs) and then finish the drawing below clique Ci+1;
refer to Figure 4(b) for an illustration. By adopting this scheme for each pair of
consecutive cliques, intersections can be prevented. ut

5 Strict Bipartite-Outerconfluent Drawings

Let G be a bipartite graph with bipartition (X,Y ). An outerconfluent drawing
of G is bipartite-outerconfluent if the vertices in X (and hence also Y ) occur
consecutively on the boundary. Graphs admitting such a drawing are called
bipartite-outerconfluent. The bipartite permutation graphs are just the graphs
that are bipartite and permutation graphs, where a permutation graph is a graph
that has an intersection model of straight lines between two parallel lines [35].

Theorem 4 (Hui et al. [32]). The class of bipartite-permutation graphs is
equal to the class of bipartite-outerconfluent graphs, i.e., the class of bipartite
graphs admitting an intersection representation of straight-line segments between
two parallel lines.

It is natural to consider the idea of bipartite drawings also in the strict
outerconfluent setting. We call a strict outerconfluent drawing D of G bipartite if
it is bipartite-outerconfluent and strict. The graphs admitting such a drawing are
called strict bipartite-outerconfluent graphs. In this section we extend Theorem 4
to the notion of strictness. The next lemma and observation are required in the
proof of our theorem. The domino graph is the graph resulting from gluing two
4-cycles together at an edge.

Lemma 2. Suppose that a reduced confluent diagram D = (N, J, Γ ) contains
two distinct uv-paths. Then we can find in GD = (VD, ED) a set V ′ ⊆ VD such
that G[V ′] is isomorphic to C6 with at least one chord.

Observation 1 Let G = (V,E) be a graph and V ′ ⊆ V a subset of six vertices
such that G[V ′] is isomorphic to a domino graph and let X ∪ Y = V ′ be the
corresponding bipartition. Now let π be a cyclic order of V ′ in which the vertices
in X and in Y are contiguous, respectively. Then there is no strict outerconfluent
diagram D = (N, J, Γ ) with order π and GD = G[V ′] or, consequently, GD = G.



8 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

Theorem 5. The (bipartite-permutation ∩ domino-free)-graphs are exactly the
strict bipartite-outerconfluent graphs.

Proof (Sketch). Let G = (V,E) be a (bipartite-permutation ∩ domino-free)
graph. By Theorem 4 we can find a bipartite-outerconfluent diagram D =
(N, J, Γ ) which has GD = G. Now assume that D is reduced but not strict.
In this case we find six nodes N ′ ⊆ N corresponding to a vertex set V ′ ⊆ VD in
GD such that GD[V ′] = (V ′, E′) is a C6 with at least one chord by Lemma 2.
In addition, since D (and hence also GD) is bipartite and domino-free, we know
there are two or three chords. Then GD[V ′] is a K3,3 minus one edge e ∈ E′ or
K3,3. In a bipartite diagram these can always be drawn in a strict way.

For the other direction, consider a strict bipartite-outerconfluent diagram
D = (N, J, Γ ). By Theorem 4, GD is a bipartite permutation graph, and by
Observation 1, it must be domino-free. Thus, GD must be as described. ut

6 Strict Outerconfluent Graphs Have Cop Number Two

The cops-and-robbers game [1] on a graph G = (V,E) is a two-player game with
perfect information. The cop-player controls k cop tokens, while the robber-player
has one robber token. In the first move the cop-player places the cop tokens on
vertices of the graph, and then the robber places his token on another vertex.
In the following the players alternate, in each turn moving their tokens to a
neighboring vertex or keeping them at the current location. The cop-player is
allowed to move all cops at once and multiple cops may be at the same vertex.
The goal of the cop-player is to catch the robber, i.e., place one of its tokens on
the same vertex as the robber.

The cop number cop(G) of a graph G is the smallest integer k such that
the cop-player has a winning strategy using k cop tokens. Gavenc̆iak et al. [19]
showed that the cop number of outer-string graphs is between three and four,
while the cop-number of many other interesting classes of intersection graphs,
such as circle graphs and interval filament graphs, is two. We show that the cop
number of SOC graphs is two as well.

Consider a SOC drawing D = (N, J, Γ ) of a graph G = (V,E), which we can
assume to be connected. For nodes u, v ∈ N , let the node interval N [u, v] ⊂ N be
the set of nodes in clockwise order between u and v on the outer face, excluding
u and v. Let the cops be located on nodes C ⊆ N and the robber be located
on r ∈ N . We say that the robber is locked to a set of nodes N ′ ⊂ N if r ∈ N ′
and every path from r to N \N ′ contains at least one node that is either in C
or adjacent to a node in C; in other words, a robber is locked to N ′ if it can be
prevented from leaving N ′ by a cop player who simply remains stationary unless
the robber can be caught in a single move. The following lemma establishes that
a single cop can lock the robber to one of two “sides” of a SOC drawing.

Lemma 3. Let D = (N, J, Γ ) be a SOC diagram of a graph G. Let a cop be
placed on node u, the robber on node r 6= u and not adjacent to u, and let v 6= r
be an arbitrary neighbor of u. Then the robber is either locked to N [u, v] or locked
to N [v, u].



On Strict (Outer-)Confluent Graphs 9

u

w

v

r

u

v

u

x

v

r
x

w

w

r
y

z

(a) (b) (c)

Fig. 5: Moves of the cops to confine the robber to a strictly smaller range.

Let u, v ∈ N be two nodes of a SOC diagram D = (N, J, Γ ). We call a neigh-
bor w of u in N [u, v] cw-extremal (resp. ccw-extremal) for u, v (assuming such
a neighbor exists), if it is the last neighbor of u in the clockwise (resp. coun-
terclockwise) traversal of N [u, v]. Now let u, v be two neighboring nodes in N ,
w ∈ N [u, v] be the cw-extremal node for u and x ∈ N [u, v] be the ccw-extremal
node for v. If w appears before x in the clockwise traversal of N [u, v] we call
w, x the extremal pair of the uv-path, see Fig. 12(b) and (c). In the case where
only one node of u, v has an extremal neighbor w, say u, we define the extremal
pair as v, w. In the following we assume that for a given uv-path the extremal
pair exists.

Lemma 4. Let D = (N, J, Γ ) be a SOC diagram of a graph G, u, v ∈ N be two
nodes connected by a uv-path in P (D) and w, x ∈ N [u, v] the extremal pair of
the uv-path. If the cops are placed at u and v and the robber is at r ∈ N [u, v],
r 6= w, r 6= x, there is a move that locks the robber to N [u,w], N [w, x] or N [x, v].

Lemma 5. Let D = (N, J, Γ ) be a SOC diagram of a graph G, u, v ∈ N be two
nodes connected by a uv-path in P (D) and w, x ∈ N [u, v] be the extremal pair of
the uv-path such that there is no wx-path in P (D). If the robber is at r ∈ N [w, x]
and the cops are placed on w, x we can find y, z ∈ N [w, x]∪{w, x} such that the
yz-path exists in P (D) and the robber is locked to N [y, z].

Combining Lemmas 3, 4 and 5 yields the result.

Theorem 6. SOC graphs have cop number two.

Proof (Sketch). Let D = (N, J, Γ ) be a strict-outerconfluent diagram of a (con-
nected) graph G. Choose any uv-path in P (D) and place the cops on u and v as
the initial move. The robber must be placed on a node r that is either in N [u, v]
or in N [v, u]; by symmetry, let us assume the former. By Lemma 3, the robber
is now locked to N [u, v] 6= ∅.

In every move we will shrink the locked interval until eventually the robber
is caught. We distinguish three cases, based on the extremal neighbors w and
x of u and v in N [u, v] and their ordering along the outer face. If w, x form no
extremal pair, we can use Lemma 3, if they do form an extremal pair, we use
first Lemma 4 and then, depending on the configuration, again Lemma 3 (see
Fig. 12(b)) or go into the case of Lemma 5 (see Fig. 12(c)). ut



10 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

Theorem 6 suggests a closer link between SOC graphs and interval-filament
graphs [21], another subclass of outer-string graphs with cop number two.

7 Clique-width of Tree-like Strict Outerconfluent Graphs

In 2005, Eppstein et al. [12] showed that every strict confluent graph whose arcs
in a strict confluent drawing topologically form a tree is distance hereditary and
hence exhibits certain well-understood structural properties—in particular, ev-
ery such graph has bounded clique-width [7]. These graphs are called ∆-confluent
graphs. In their tree like confluent drawings an additional type of 3-way junction
is allowed, the ∆-junction, which smoothly links together all three incident arcs.
See Fig. 6, where the junctions j′ and k′ now form a single ∆-junction instead
of three separate merge or split junctions.

u
v

w

x

y

i

j′ k′

Fig. 6: A ∆-confluent diagram
representing K5 − (u, v). Nodes
are disks, junctions are squares.
∆-junctions are marked with a
grey circle.

In this section, we lift the result of Epp-
stein et al. [12] to the class of strict out-
erconfluent graphs: in particular, we show
that as long as the arcs incident to junctions
(including ∆-junctions) topologically form a
tree, strict outerconfluent graphs also have
bounded clique-width. Equivalently, we show
that “extending” any drawing covered by
Eppstein et al. [12] through the addition of
outerplanar drawings of subgraphs in order to
produce a strict outerconfluent drawing does
not substantially increase the clique-width of
the graph. Since the notion of clique-width
will be central to this section, we formally in-
troduce it below (see also the work of Courcelle et al. [7]). A k-graph is a graph
whose vertices are labeled by [k] = {1, 2, . . . , k}; formally, the graph is equipped
with a labeling function γ : V (G)→ [k], and we also use γ−1(i) to denote the set
of vertices labeled i for i ∈ [k]. We consider an arbitrary graph as a k-graph with
all vertices labeled by 1. We call the k-graph consisting of exactly one vertex v
(say, labeled by i) an initial k-graph and denote it by i(v). The clique-width of
a graph G is the smallest integer k such that G can be constructed from initial
k-graphs by means of repeated application of the following three operations:

1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by pi→j);
3. Edge insertion: adding an edge between every vertex labeled by i and every

vertex labeled by j, where i 6= j (denoted by ηi,j or ηj,i).

The construction sequence of a k-graph G using the above operations can be
represented by an algebraic term composed of i(v), ⊕, pi→j and ηi,j (where
v ∈ V (G), i 6= j and i, j ∈ [k]). Such a term is called a k-expression defining G,
and the clique-width of G is the smallest integer k such that G can be defined
by a k-expression. Distance-hereditary graphs are known to have clique-width at



On Strict (Outer-)Confluent Graphs 11

most 3 [26] and outerplanar graphs have clique-width at most 5 due to having
treewidth at most 2 [3, 8].

Let (tree-like) ∆-SOC graphs be the class of all graphs which admit strict
outerconfluent drawings (including ∆-junctions) such that the union of all arcs
incident to at least one junction topologically forms a tree. Clearly, the edge
set E of every tree-like ∆-SOC graph G = (V,E) with confluent diagram DG

can be partitioned into sets Es and Ec, where Es (the set of simple edges)
contains all edges represented by single-arc paths in D not passing through any
junction and Ec (the set of confluent edges) contains all remaining edges in G.
Let Gc = G[Ec] = (Vc, Ec) be the subgraph of G induced by Ec, i.e., Vc is
obtained from V by removing all vertices without incident edges in Ec.

We note that even though Gc is known to be distance-hereditary [12] and
G−Ec is easily seen to be outerplanar, this does not imply that tree-like ∆-SOC
graphs have bounded clique-width—indeed, the union of two graphs of bounded
clique-width may have arbitrarily high clique-width (consider, e.g., the union of
two sets of disjoint paths that create a square grid). Furthermore, one cannot
easily adapt the proof of Eppstein et al. [12] to tree-like ∆-SOC graphs, as that
explicitly uses the structure of distance-hereditary graphs; note that there exist
outerplanar graphs which are not distance-hereditary, and hence tree-like ∆-
SOC graphs are a strict superclass of distance hereditary graphs. Before proving
the desired theorem, we introduce an observation which will later allow us to
construct parts of G in a modular manner.

Observation 2 Let H = (V,E) be a graph of clique-width k ≥ 2, let V1, V2 be
two disjoint subsets of V , and let s ∈ V \ (V1 ∪V2). Then there exists a (3k+ 1)-
expression defining H so that in the final labeling all vertices in V1 receive label
1, all vertices in V2 receive label 2, s receives label 3 and all remaining vertices
receive label 4.

Theorem 7. Every tree-like ∆-SOC graph has clique-width at most 16.

Proof (Sketch). We begin by partitioning the edge set of the considered ∆-
SOC graph into Ec and Es, as explained above, and by setting an arbitrary
arc incident to a junction as the root r. Given a tree-like ∆-SOC drawing of the
graph, our aim will be to pass through the confluent arcs of the drawing in a
leaves-to-root manner so that at each step we construct a 16-expression for a
certain circular segment of the outer face. This way, we will gradually build up
the 16-expression for G from modular parts, and once we reach the root we will
have a complete 16-expression for G.

At its core, the proof partitions nodes in the drawing into regions, delimited
by arcs connecting nodes and junctions (such nodes are not part of any region).
Each region is an outerplanar graph (which has clique-width at most 5), and
furthermore the nodes in a region can only be adjacent to the nodes on the
boundary of that region. Hence, by Observation 2 using k = 5, each region can
be constructed by a 16-expression which also uses separate labels to capture the
neighborhood of that region to its border. See Fig. 7 for an illustration.



12 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

j

a1

a2

R1

R2

s
R3

j′
a

Fig. 7: Sketch of a tree-like ∆-SOC
graph G with its regions.

The second ingredient used in the
proof is tied to the tree-like structure of
the drawing. In particular, one cannot
construct a 16-expression (and even any
k-expression for constant k) by simply
joining the regions together in the order
they appear along the outer face. Instead,
to handle the adjacencies imposed by the
paths in the drawing, one needs to pro-
cess regions (and their bordering vertices)
in an order which respects the structure of
the tree. To do so, we introduce a notion
of depth: nodes have a depth of 0, while
junctions have depth equal to the largest
depth of its “children” plus 1. Regions are then processed in an order which
matches the depth of the corresponding junctions: for instance, if in Fig. 7 one
of the junctions a1 and a2 has depth d then junction j′ has depth d+ 1, and so
the blue regions will be constructed by modular 16-expressions before the yellow
one. Afterwards, all three regions R1, R2, R3 will be merged together into a blue
region with a single 16-expression. By iterating this process, upon reaching the
root r we obtain a 16-expression that constructs the whole ∆-SOC graph. ut

8 Conclusion

While this work provides the first in-depth study of SC and SOC graphs, a
number of interesting open questions remain. One such question is motivated by
our results on the cop-number of SOC graphs: we showed that SOC graphs are
incomparable to most classes identified to have cop number two by Gavenc̆iak
et al. [19], but we could not show such a result for the class of interval-filament
graphs [21]. It seems likely that SOC graphs are contained in this class. Sim-
ilarly, it is open whether SC graphs are contained in subtree-filament graphs.
Furthermore, it is conceivable that a similar construction for the inclusion in
string graphs, Section 3, could be used to show similar results for non-strict
confluent graphs. Finally, investigating the curve complexity of our construction
might provide insight into the curve complexity of SC and SOC diagrams.

On the algorithmic side, Section 7 raises the question of whether clique-
width might be used to recognize SOC graphs, and perhaps even for finding
SOC drawings. Another decomposition-based approach would be to use so-called
split-decompositions [22], which we did not consider here. It is also open whether
all bipartite permutation and trapezoid graphs [6, 24] are SOC graphs. Since
bipartite permutation graphs are equivalent to bipartite trapezoid graphs [6,24],
the former represents a promising first step in this direction. It also remains open
if it is possible to drop the unit length condition on the intervals in Section 4. We
did not see an obvious way of adapting the construction for confluent drawings
of interval graphs [9].



On Strict (Outer-)Confluent Graphs 13

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Applied Mathe-
matics 8(1), 1–12 (1984)

2. Bach, B., Riche, N.H., Hurter, C., Marriott, K., Dwyer, T.: Towards unambiguous
edge bundling: Investigating confluent drawings for network visualization. IEEE
Transactions on Visualization and Computer Graphics 23(1), 541–550 (2017)

3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

4. Benzaken, C., Crama, Y., Duchet, P., Hammer, P.L., Maffray, F.: More character-
izations of triangulated graphs. J. of Graph Theory 14(4), 413–422 (1990)

5. Bouchet, A.: Circle graph obstructions. J. of Combinatorial Theory, Series B 60(1),
107–144 (1994)

6. Brandstädt, A., Spinrad, J., Stewart, L.: Bipartite permutation graphs are bipartite
tolerance graphs. Congressus Numerantium 58, 165–174 (1987)

7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

8. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101(1-3), 77–114 (2000)

9. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:
Visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1),
31–52 (2005)

10. Duffin, R.: Topology of series-parallel networks. J. of Mathematical Analysis and
Applications 10(2), 303 – 318 (1965)

11. Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane. J.
of Combinatorial Theory, Series B 21(1), 8–20 (1976)

12. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Graph
Drawing (GD’05). LNCS, vol. 3843, pp. 165–176. Springer (2006)

13. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorith-
mica 47, 439–452 (2007)

14. Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.:
Strict confluent drawing. J. of Computational Geometry 7(1), 22–46 (2016)

15. Eppstein, D., Simons, J.A.: Confluent Hasse diagrams. J. of Graph Algorithms and
Applications 17(7), 689–710 (2013)

16. Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalizations, geom-
etry and algorithms. Discrete Applied Mathematics 74(1), 13–32 (1997)

17. Gabor, C.P., Supowit, K.J., Hsu, W.L.: Recognizing circle graphs in polynomial
time. J. ACM 36(3), 435–473 (1989)

18. Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Hungarica 18(1-2),
25–66 (1967)

19. Gavenciak, T., Jeĺınek, V., Klav́ık, P., Kratochv́ıl, J.: Cops and robbers on inter-
section graphs. In: Algorithms and Computation (ISAAC’13). pp. 174–184 (2013)

20. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum cover-
ing by cliques, and maximum independent set of a chordal graph. SIAM J. on
Computing 1(2), 180–187 (1972)

21. Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of
filaments. Information Processing Letters 73(5-6), 181–188 (2000)

22. Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: Characteriza-
tions and fully dynamic algorithms for totally decomposable graphs. Discrete Ap-
plied Mathematics 160(6), 708–733 (2012)



14 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

23. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, vol. 57. Elsevier
(2004)

24. Golumbic, M.C., Monma, C.L., Trotter Jr, W.T.: Tolerance graphs. Discrete Ap-
plied Mathematics 9(2), 157–170 (1984)

25. Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection
graphs. Discrete Mathematics 43(1), 37 – 46 (1983)

26. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
Int. J. Found. Comput. Sci. 11(3), 423–443 (2000)

27. Hadwiger, H., Debrunner, H., Klee, V.: Combinatorial geometry in the plane.
Courier Corporation (2015)

28. Hajnal, A., Surányi, J.: Über die Auflösung von Graphen in vollständige Teil-
graphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math 1, 113–121 (1958)

29. Halldórsson, M.M., Kitaev, S., Pyatkin, A.: Alternation graphs. In: Graph-
Theoretic Concepts in Computer Science (WG’11). LNCS, vol. 6986, pp. 191–202.
Springer (2011)

30. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hier-
archical data. IEEE Trans. Visualization and Computer Graphics 12(5), 741–748
(2006)

31. Hsu, W.L.: Maximum weight clique algorithms for circular-arc graphs and circle
graphs. SIAM J. on Computing 14(1), 224–231 (1985)

32. Hui, P., Pelsmajer, M.J., Schaefer, M., Stefankovic, D.: Train tracks and confluent
drawings. Algorithmica 47(4), 465–479 (2007)

33. Kostochka, A., Kratochv́ıl, J.: Covering and coloring polygon-circle graphs. Dis-
crete Mathematics 163(1-3), 299–305 (1997)

34. Kratochv́ıl, J.: String graphs. I. the number of critical nonstring graphs is infinite.
J. Combinatorial Theory, Series B 52(1), 53–66 (1991)

35. Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification
of permutation graphs. Canadian Journal of Mathematics 23(1), 160–175 (1971)

36. Roberts, F.S.: Indifference graphs. Proof techniques in graph theory pp. 139–146
(1969)

37. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinato-
rial problems on series-parallel graphs. J. ACM 29(3), 623–641 (1982)

38. Trotter, W.T.: Combinatorics and partially ordered sets: Dimension theory, vol. 6.
JHU Press (2001)

39. Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien im Rn.
Ph.D. thesis, Universität Göttingen (1967)

40. Yu, C.W., Chen, G.H.: Efficient parallel algorithms for doubly convex-bipartite
graphs. Theoretical Computer Science 147(1-2), 249–265 (1995)



On Strict (Outer-)Confluent Graphs 15

A Omitted Proofs from Section 3

Lemma 1. Let D = (N, J, Γ ) be a strict confluent diagram, let u, v ∈ N be two
nodes and let i, j be two distinct merge-junctions for u, v. Then i is neither an
ancestor nor a descendant of j in Tu (and, by symmetry, in Tv).

Proof. Assume i, j would be two such junctions, where i is an ancestor of j
in Tu. Then there are two distinct smooth paths from v to j in D: one passing
through i and then following the path to j in Tu, the other one merging into Tu
in junction j. This contradicts the strictness of D. ut

Theorem 2. Every SOC graph is an outer-string graph.

Proof. Let G = (V,E) be a SOC graph with a strict outerconfluent drawing
D = (N, J, Γ ). Construct traces exactly as in the proof of Theorem 1 for the
SC graphs. Since for each node u ∈ N the trace t(u) starts at the position of
u in D we immediately know that every trace starts on the boundary of the
enclosing disk of D. Further, every trace is a continuous curve and does not
leave the enclosing disk of D by construction. Hence, the constructed set of
traces immediately yields an outer-string representation of G. ut

B Omitted Proofs from Section 4

Theorem 3. Every unit-interval graph is an SC graph.

Proof. Consider a unit interval graph G with a unit-interval layout ΓUI of G.
In ΓUI , every vertex v is represented by an interval [`(v), r(v)] such that r(v)−
`(v) = u for some constant u, and two vertices v, w are connected by an edge,
if and only if `(w) ∈ [`(v), r(v)] or r(w) ∈ [`(v), r(v)]. We can assume that
all intervals have distinct endpoints, as otherwise the following modification is
possible: Let v1, . . . , vk be k vertices such that `(v) := `(v1) = . . . = `(vk) and
let ε > 0. Then we assign new interval coordinates, such that `(vi) := `(v) + i · ε.
Clearly, since all vertices v1, . . . , vk had the same neighborhood before, we can
chose ε sufficiently small to retain the incidencies. Let O = (v1, . . . , vn) denote
the ordering of V such that for vertex vi it holds that `(vi) < `(vj) for all j > i.
We call such an ordering O a left-to-right-ordering.

We first indentify subcliques C1, . . . , Ck of G such that each vertex is part
of exactly one Ci as follows. We say that a vertex vi is a leader in a left-to-
right-ordering O if and only if there exists no vertex vj with j < i and `(vi) <
r(vj) such that vj is leader. Note that by definition v1 is always a leader. The
second leader is the first vertex vi such that r(v1) < `(vi) and so on. Let L =
(l1, . . . , lk) ⊆ V denote the left-to-right-ordered set of leaders. It is easy to see
that L is a set of disjoint intervals. We say that vj is leader of vertex vi or
vj = lead(vi) if j ≤ i, vj is leader and there exists no leader vh for j < h < i.
Observe that every vertex v has a uniquely defined leader which is the interval,
in which `(v) is located. Since all intervals have unit size, there always exists



16 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

an edge between vertices with the same leader. Hence, all vertices with the
same leader form a clique and we define Ci = {v ∈ V |lead(v) = li}. Further,
if li is leader of vertex v, since all intervals are unit and leaders are disjoint,
r(v) ∈ (r(li), r(li+1)), that is, vertex v can only be connected to two leaders. For
an illustration of such a decomposition refer to Figure 4(a).

Next, we describe how to produce a strict confluent diagram D of G. For an
example illustration that follows the notation of the proof, refer to Figure 4(b).
Let C = (C1, . . . , Ck) denote the left-to-right-ordered (according to their leaders)
set of cliques. We draw each clique Ci = (Vi, Vi × Vi) ∈ C with the following
SOC layout: Let Vi = (v1, . . . , vk) be the left-to-right-ordered set of vertices.
We position v1, d2, . . . , dk−1, vk from left to right on a horizontal line H, and we
position vi below di for 2 ≤ i ≤ k − 1, where di is a ∆-junction connecting vi
with the two neighbors of di on H. Note that a ∆-junction smoothly links each
pair of the three incident arcs. We order the drawings of all Ci ∈ C from left
to right along H, that is the drawing of Ci appears in between the drawings of
Ci−1 and Ci+1. Note that all vertices can be reached from below.

It remains to describe how to realize edges from vertices in Ci ∈ C to vertices
in Ci+1. Let Ci = (Vi, Vi × Vi) and let Vi = (v1, . . . , vk) be the left-to-right-
ordered set of vertices of Ci. Consider edge (v`, w) ∈ E for v` ∈ Vi and w ∈ Vi+1.
Since(v`, w) exists, in ΓUI , it holds that `(v`) < `(w) < r(v`). For all vj ∈ Vi with
j ≥ `, it obviously holds, that `(vj) ∈ (`(v`), `(w)). Therefore, also (vj , w) ∈ E.
Further, for v` it clearly holds, that its neighbors W ∈ Vi+1 are consecutive
in the left-to-right-order of vertices defined by ΓUI . This allows us to realize
the bundle of edges going from Vi to a consecutive set of vertices W ∈ Vi+1 as
follows. Let W ⊆ Vi+1 such that v` is the leftmost neighbor of each w ∈W . We
add a binary junction b` in between d` and d`−1 (or v1 if ` = 2) such that b` is
a split junction for d` and a merge junction for d`−1 and the root br of a tree
Tb of binary junctions. In Tb, each junction is a split junction for its ancestor
and each leaf of Tb is connected to a pair of vertices in W . We position Tb below
W and route the segment between br and b` first above the drawing of Ci, then
let it cross line H and finally route it below the drawing of Ci+1. Since we use
this scheme for all Ci, we avoid intersections of segments between different pairs
of consecutive cliques. Also, since we directly connect to vertices W via Tb, we
realize all edges exactly once, yielding a strict drawing of G. ut

C Omitted Proofs from Section 5

Let D = (N, J, Γ ) be a strict outerconfluent diagram and π the clockwise cyclic
order of the nodes. Consider GD = (VD, ED) and use π to order the vertices of
GD on a circle. When using these vertex positions for a traditional straight-line
circular layout, the order π determines all the crossings between edges in GD.
Namely two edges (a, c), (b, d) ∈ ED intersect if and only if a < b < c < d
in π. We say that such a crossing is (confluently) representable if the edges
(a, b), (c, d) or (a, d), (b, c) are also contained in ED. If this is the case, then the
induced subgraph of the four incident vertices of the crossing edges contains



On Strict (Outer-)Confluent Graphs 17

a K2,2, which we can represent by a merge-split pair. Otherwise, the crossing
cannot be removed in an outerconfluent diagram with order π.

Lemma 6. Let D be a strict outerconfluent diagram, GD the graph represented
by D, and π the order inferred from D. If we use π to create a circular straight-
line layout of GD, then every crossing is representable.

Proof. Let (a, c), (b, d) ∈ ED be two edges that have a crossing in a circular
layout of GD with order π. Let p, q ∈ P (D) be two paths corresponding to these
edges in D. Since the order of the vertices and nodes is the same we know there
exist two junctions i, j ∈ J such that either a, b merge at i and c, d at j or a, d
merge at i and c, b at j. This means that the edges (a, b) and (c, d) or (a, d) and
(b, c) exist as well, so for every crossing we find that it is part of a K2,2. ut

It is clear that a graph can only have a strict outerconfluent drawing if it has
a circular layout with all crossings representable. This is not sufficient though,
as there are such graphs that have no strict outerconfluent drawing. We obtain
two 6-vertex obstructions for strict outerconfluent drawings, namely a K3,3 with
an alternating vertex order and a domino graph in bipartite order, see Fig. 8
and Fig. 9.

Observation 3 Let G = (V,E) be a graph and V ′ ⊆ V a subset of six vertices
such that G[V ′] is isomorphic to K3,3 and let X ∪ Y = V ′ be the corresponding
bipartition. Now let π be a cyclic order of V ′ in which vertices from X and Y
alternate, then there is no strict outerconfluent diagram D = (N, J, Γ ) with order
π and GD = G[V ′] or, consequently, GD = G.

Proof. Let G = (V,E), V ′ and π as above. Draw G in a circular layout with the
edges as straight lines. We then find the vertices in V ′ drawn as in Fig. 8. Now,
when creating the strict outerconfluent diagram D of G, we at some point need
to replace the crossings in G[V ′] with confluent arcs and junctions. We can do
this step-by-step.

The first two crossings we can pick arbitrarily due to the symmetry of K3,3

and replace them with two merge-split pairs. In Fig. 8 we choose (x, z), (v, w)
and (u, y), (x, z). This creates a diagram with one remaining crossing between
two arcs. Since we replaced two representable crossings we did not change the
adjacencies and hence this crossings can be replaced as well. The only possibility
to replace the crossing with confluent junctions though is to put another merge-
split pair. This, however, introduces a cycle into the diagram as shown in the
second step in Fig. 8. Now there are two distinct paths to go from u to v, not
counting multiple turns around the circular path, which contradicts strictness.
ut

Observation 1 Let G = (V,E) be a graph and V ′ ⊆ V a subset of six vertices
such that G[V ′] is isomorphic to a domino graph and let X ∪ Y = V ′ be the
corresponding bipartition. Now let π be a cyclic order of V ′ in which the vertices
in X and in Y are contiguous, respectively. Then there is no strict outerconfluent
diagram D = (N, J, Γ ) with order π and GD = G[V ′] or, consequently, GD = G.



18 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

z

u v

x
yw

z

u v

x

y
w

z

u v

x

y
w

Fig. 8: Forbidden alternating order of K3,3.

u v u v u v

w z

x y

w z

x y x

w z

y

Fig. 9: Forbidden domino order.

Proof. Similarly to Observation 3 we need to transform a bipartite circular
straight-line layout of the domino graph into an outerconfluent one by replacing
crossings with merge-split junctions. For the order of vertices depicted in Fig. 9
it is clear that both crossings need to be replaced by merge-split pairs, but this
introduces two distinct paths connecting u and v, which contradicts strictness.
One can observe that any other bipartite order of the vertices produces at least
one non-representable crossing. Thus no outerconfluent drawing exists in such a
case, regardless of strictness. ut

Lemma 2. Suppose that a reduced confluent diagram D = (N, J, Γ ) contains
two distinct uv-paths. Then we can find in GD = (VD, ED) a set V ′ ⊆ VD such
that G[V ′] is isomorphic to C6 with at least one chord.

Proof. Let p, q ∈ P (D) be two distinct uv-paths in a reduced confluent diagram
D = (N, J, Γ ). We find two minimal distinct sub-paths p′ of p and q′ of q between
two junctions i, j of p and q.

First we assume that i is a split-junction of p, q and j a merge-junction of p, q.
We claim that each of p′ and q′ must contain at least two junctions that form
a merge-split pair. The argument is symmetric, so we focus on p′. If p′ passes
through no junction, the arc of p′ can be removed since q′ achieves the same
connectivity, but this contradicts that D is reduced. If p′ passes through exactly
one junction i1, then the arc of p′ that does not split at i1 can be removed without
changing any node adjacencies in GD. So p′ must contain at least two junctions
i1 and i2. Assume there would be no merge-split pair. This means, coming from
i path p′ passes through a sequence of split-junctions followed by a sequence of
merge-junctions. But in that case the arc connecting the last split-junction with
the first merge-junction can be removed. So there must be a merge-split pair on
p′ and similarly on q′.

Next we follow each arc of these two merge-split pairs that does not lie on p′

and q′ towards some reachable node. This yields four nodes x, y, w, z ∈ N that
together with u and v form a domino subgraph as in Observation 1, which is in
fact a C6 with a chord.

Assume there are no two uv-paths as in the first case. Then i is a merge-
junction of p, q and j is a split-junction of p, q, see Fig. 10. In this case, one of the
paths, say q′ contains a cycle and visits i and j twice. Obviously all arcs of p′ are
essential as removing them would disconnect u and v. By the same arguments
as before, there must be at least one merge-split pair on q′ as otherwise we can



On Strict (Outer-)Confluent Graphs 19

u v

x y

u v

x y

i j

Fig. 10: A circular path with only two merge-split pairs can be redrawn without
change of the node order.

u1

u2

u3

v1

v2

v3

u1

u2

u3

v1

v2

v3

Fig. 11: Redrawing a K3,3 minus an edge. The red edge is missing. Since the
graph is bipartite, we find that for every path using one of the green arcs on the
left, we can redraw it such that it merges into the path coming from u3 at the
green marker without creating any wrong adjacencies.

delete an arc of q′. However, if there is a single minimal merge-split pair i1, i2 on
q′ (i.e., two directly adjacent junctions), then one can reroute the arcs joining
q′ in i1 and i2 towards i and j, respectively and remove two arcs from q′, see
Fig. 9. Hence there must be at least two merge-split pairs on q′ and we can find
six nodes that form a K3,3 subgraph as in Observation 3, which is again a C6

with at least one chord. ut

Theorem 5. The (bipartite-permutation ∩ domino-free)-graphs are exactly the
strict bipartite-outerconfluent graphs.

Proof. Let G = (V,E) be a (bipartite-permutation ∩ domino-free) graph. By
Theorem 4 we can find a bipartite-outerconfluent diagram D = (N, J, Γ ) which
has GD = G. Now assume that D is reduced but not strict. In this case we
find six nodes N ′ ⊆ N corresponding to a vertex set V ′ ⊆ VD in GD such that
GD[V ′] = (V ′, E′) is a C6 with at least one chord by Lemma 2. In addition, since
D (and hence also GD) is bipartite and domino-free, we know there are two or
three chords. But then GD[V ′] is just a K3,3 minus one edge e ∈ E′ or K3,3. In
a bipartite diagram these can always be drawn in a strict way.

Let V ′ = {u1, u2, u3, v1, v2, v3} where the ui are on one side of the bipartition
and the vi on the other; they are ordered by their indices from top to bottom.
First, observe that since G is a bipartite permutation graph and the algorithm



20 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

by Hui et al. [32] uses the the strong ordering on the vertices, we get that in
a K3,3 minus an edge this edge is either u1v3 or u3v1. Further we can assume
that the non-strict doubled path is between u2 and v2 since D is reduced. For
if this was not the case we would find that there are two merge-split pairs with
vertices all below or above u2, v2 in D, but then one of these pairs has junctions
with both uv-paths and we can simply reduce it.

Now, w.l.o.g., assume u3v1 is the missing edge. It follows that u1v3 exists
as an edge and the u1v3 path must also have junctions with both u2v2 paths.
Furthermore, we know both these junctions are merge junctions for u1 and u2,
v2 and v3 respectively. Thus we can redraw as in Fig. 11. For the case of no edge
from K3,3 missing the same argument applies.

For the other direction, consider a strict bipartite-outerconfluent diagram
D = (N, J, Γ ). By Theorem 4, GD is a bipartite permutation graph, and by
Observation 1, it must be domino free. Thus, GD must be as described. ut

D Omitted Proofs from Section 6

Consider a SOC drawing D = (N, J, Γ ) of a graph G = (V,E), which we can
assume to be connected. For nodes u, v ∈ N , let the node interval N [u, v] ⊂ N be
the set of nodes in clockwise order between u and v on the outer face, excluding
u and v. Let the cops be located on nodes C ⊆ N and the robber be located
on r ∈ N . We say that the robber is locked to a set of nodes N ′ ⊂ N if r ∈ N ′
and every path from r to N \N ′ contains at least one node that is either in C
or adjacent to a node in C; in other words, a robber is locked to N ′ if it can be
prevented from leaving N ′ by a cop player who simply remains stationary unless
the robber can be caught in a single move. The following lemma establishes that
a single cop can lock the robber to one of two “sides” of a SOC drawing.

Lemma 3. Let D = (N, J, Γ ) be a SOC diagram of a graph G. Let a cop be
placed on node u, the robber on node r 6= u and not adjacent to u, and let v 6= r
be an arbitrary neighbor of u. Then the robber is either locked to N [u, v] or locked
to N [v, u].

Proof. Assume that, w.l.o.g., r ∈ N [u, v], and consider an arbitrary path P in G
from r to N \ (N [u, v] ∪ {u, v}), which contains neither u nor a neighbor of u.
Consider the first edge xy on P such that y 6∈ N [u, v], and consider the x-y path
in D. Since y 6= u and y 6= v, it must hold that the x-y path in D crosses the
u-v path at some junction. Hence x must either be adjacent to u or to v; in the
former case, this immediately contradicts our assumption that P contains no
neighbor of u. In the latter case, it follows that there must be a junction on the
u-v path in D, which is used by the x-y path to reach y, and hence u must also
be adjacent to y—once again contradicting our initial assumption about P . ut

Let u, v ∈ N be two nodes of a SOC diagram D = (N, J, Γ ). We call a neigh-
bor w of u in N [u, v] cw-extremal (resp. ccw-extremal) for u, v (assuming such



On Strict (Outer-)Confluent Graphs 21

u

w

v

r

u

v

u

x

v

r
x

w

w

r
y

z

(a) (b) (c)

Fig. 12: Moves of the cops to confine the robber to a strictly smaller range.

a neighbor exists), if it is the last neighbor of u in the clockwise (resp. coun-
terclockwise) traversal of N [u, v]. Now let u, v be two neighboring nodes in N ,
w ∈ N [u, v] be the cw-extremal node for u and x ∈ N [u, v] be the ccw-extremal
node for v. If w appears before x in the clockwise traversal of N [u, v] we call
w, x the extremal pair of the uv-path, see Fig. 12(b) and (c). In case only one
node of u, v has an extremal neighbor w, say u, we define the extremal pair as
v, w.

In the following we assume that for a given uv-path the extremal pair exists.

Lemma 4. Let D = (N, J, Γ ) be a SOC diagram of a graph G, u, v ∈ N be two
nodes connected by a uv-path in P (D) and w, x ∈ N [u, v] the extremal pair of
the uv-path. If the cops are placed at u and v and the robber is at r ∈ N [u, v],
r 6= w, r 6= x, there is a move that locks the robber to N [u,w], N [w, x] or N [x, v].

Proof. In case r ∈ N [u,w] or r ∈ N [x, v] we can swap the cops in one move (see
Fig. 12(a)) by moving the cop from v to u and from u to w in the former case
and from u to v and v to x in the latter. This locks the robber to N [u,w] or
N [x, v] by Lemma 3.

The remaining case is r ∈ N [w, x]. By construction of the extremal pair, no
y ∈ N [w, x] is a neighbor of u or v. Because G is a connected graph, there must
be at least one y ∈ N [w, x] that is a neighbor of w or x as the only smooth paths
leaving N [w, x] must share a merge junction with u or v on the paths towards
w or x. In the next step, we move the cops from u and v to w and x. We need
to distinguish two subcases. If r is not a neighbor of w or x, then this position
obviously locks the robber to N [w, x] as any path leaving N [w, x] must pass
through a neighbor of w or x. If, however, r is already at a neighbor of w 6= u
or x 6= v, it may escape from N [w, x] in the next move to a node in N [u,w] or
N [x, v]. But then by Lemma 3 it locks itself to N [u,w] or N [x, v]. Note that if
w = u or x = v, then there is no way for r to escape across w or x, respectively,
as r would be a neighbor of u or v in that case. ut

Lemma 5. Let D = (N, J, Γ ) be a SOC diagram of a graph G, u, v ∈ N be two
nodes connected by a uv-path in P (D) and w, x ∈ N [u, v] be the extremal pair of
the uv-path such that there is no wx-path in P (D). If the robber is at r ∈ N [w, x]
and the cops are placed on w, x we can find y, z ∈ N [w, x]∪{w, x} such that the
yz-path exists in P (D) and the robber is locked to N [y, z].



22 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

Proof. First assume that there is a path in G connecting w and x, which passes
only through nodes in N [w, x]; see Fig. 12(c). Let y ∈ N [w, x] be the ccw-
extremal node of x. If r ∈ N [y, x] we are done and by Lemma 3 we can move
the cop from w to y as the cop at x suffices to lock the robber to N [y, x].

Now let r ∈ N [w, y] instead and move the cop from x to y. As in the proof of
the previous lemma, there are two subcases. If r is not a neighbor of y, the new
position of the cops locks the robber to N [w, y]. Otherwise, the robber might
escape to N [y, x] but immediately locks itself to N [y, x] by Lemma 3 and we
are done. We repeat this process of going to the ccw-extremal node until we
eventually lock the robber to some N [y, z] where the yz-path is in P (D).

Now assume that there is no path from w to x in G that passes only through
nodes in N [w, x]. But then the only possibility for the robber to leave N [w, x] is
by passing through a neighbor of just one of w or x, say x. We keep the cop at x,
which suffices to lock the robber to N [w, x]. We can thus safely move the other
cop first from w to x and from there following a path from one ccw-extremal
node to the next until reaching a node y such that the robber is now locked to
N [y, x] by the two cops. If there is an xy-path in P (D) we are done. Otherwise
we are now in the first case of the proof since by definition of y there is a path
from x to y in G passing only through nodes in N [y, x]. ut

Combining Lemma 3, 4 and 5 yields the result.

Theorem 6. SOC graphs have cop number two.

Proof. Let D = (N, J, Γ ) be a strict-outerconfluent diagram of a (connected)
graph G. Choose any uv-path in P (D) and place the cops on u and v as initial
turn. The robber must be placed on a node r that is either in N [u, v] or in
N [v, u]; by symmetry, let us assume the former. By Lemma 3, the robber is now
locked to N [u, v] 6= ∅.

In every move we will shrink the locked interval until eventually the robber
is caught. Let w ∈ N [u, v] be the cw-extremal neighbor of u and let x ∈ N [u, v]
be the ccw-extremal neighbor of v, which, for now, we assume to exist both. If
the clockwise order of u, v, w, x on the outer face is u < x < w < v then the
robber must be either locked to N [u,w] or to N [x, v] by Lemma 3, so we move
the cops to the respective nodes u,w or v, x and recurse with a smaller interval.
If the clockwise order is u < w < x < v then w, x is an extremal pair and by
Lemma 4 we can lock the robber to a smaller interval in the next move. In case
it is locked to N [u,w] or to N [x, v] we move the cops accordingly and recurse
by Lemma 3. If it is locked to N [w, x], then either there is a wx-path in P (D)
and again Lemma 3 applies (Fig. 12(b)) or there is no wx-path and Lemma 5
applies after moving the cops to w and x.

It remains to consider the case that u, v do not both have an extremal neigh-
bor in N [u, v]. At least one of them, say u, must have a neighbor w in N [u, v]—
otherwise G would not be connected. So we define the extremal pair as v, w.
If the robber is in N [u,w] we can move the cops to u,w as in Fig. 12(a) and
apply Lemma 3. If r ∈ N [w, v], then we can move the cops to v, w and Lemma 5
applies. ut



On Strict (Outer-)Confluent Graphs 23

Fig. 13: The black graph is not a circle
graph, but it has a SOC drawing.

a

c

e

g

f

d

b a

c

e

g

f

d

b

Fig. 14: Counterexample for SOC ⊆
comparability.

Fig. 15: Without dashed and dotted
edges, counterexample for comparabil-
ity ⊆ SOC, with dashed edge for cir-
cle ⊆ SOC, and with all edges for co-
chordal ⊆ SOC.

Fig. 16: The complement of a subdi-
vided star is a counterexample for co-
comparability ⊆ SOC. Function repre-
sentation on the right [25]

E Non-Inclusion Results for Strict Outerconfluent
Graphs

Here we collect smaller results for classes of graphs which have non-empty in-
tersection with the class of SOC graphs, but are neither superclasses nor sub-
classes. Theorem 8 shows our incomparability results, while Corollary 1 lists
classes which are not contained in the class of SOC graphs. Already Dickerson
et al. [9] noticed that, given a non-planar graph G = (V,E), if for each edge
(u, v) ∈ E we create a vertex w and make it adjacent to u and v, then the
resulting graph is not even confluent.

Circle graphs are graphs that are representable by an intersection model of
chords in a circle. For the counterexample we use the following characterization
of the class.

Definition 1 (Bouchet [5]). The local complement G ∗ v is obtained from G
by complementing the edges induced by v and its neighborhood in G. Two graphs
are said to be locally equivalent if one can be obtained from the other by a series
of local complements. A graph G is a circle graph iff no graph locally equivalent
to G has an induced subgraph isomorphic to W5, BW3, or W7 (see Fig. 18).

Circular-arc graphs are the graphs which have an intersection model of arcs
of one circle [27]. Let ab, cd be two non-crossing chords of a circle and a, b, c, d
points on the circle in order a, b, c, d. A circle trapezoid then consists of the two
chords ab, cd and the circular-arcs bc and da. A circle-trapezoid graph is a graph
which can be represented by intersecting circle trapezoids of one circle [16].



24 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

a

b c

d

e

f

gh

i

j

a

b c

d

e

f

g
h

i

j

a

b c

d

e

f

g
h

i

j

a

b

c
d

h

i

Fig. 17: Counterexample for SOC ⊆ circle. The light-blue edges give the SOC
drawing.

Co-comparability graphs are the intersection graphs of x-monotone curves in
a vertical strip [25]. The polygon-circle graphs are the graphs which have an
intersection model of polygons inscribed in the same circle [33]. Interval filament
graphs, defined by Gavril [21], are intersection graphs of continuous, non-negative
functions defined on closed intervals, such that they are zero-valued at their
endpoints.

The comparability graphs are the transitive orientable graphs. We also use the
forbidden subgraph characterization by Gallai [18]. The alternation graphs are
the graphs which have a semi-transitive orientation [29]. For a graph G = (V,E)
a semi-transitive orientation is acyclic and for any directed path v1, . . . , vk we
either find (v1, vk) 6∈ E or (vi, vj) ∈ E for all 1 ≤ i < j < k.

The chordal graphs are the graphs, which have no chord-less induced C4

[23,28]. Co-chordal graphs are the complement graphs of chordal graphs. Series-
parallel graphs are the graphs constructed from a multigraph, consisting of one
vertex and a loop, by subdividing or replacing an edge repeatedly with two
parallel ones [10].

Finally the class of pseudo-split graphs contains the graphs G = (V,E) such
that V can be partitioned into three sets C (a complete graph), I (an independent
set) and S (if not empty an induced C5). Further every vertex in C is adjacent
to every vertex in S and every vertex in I is non-adjacent to every vertex in S.

Theorem 8. These graph classes are incomparable to SOC graphs: circle, circular-
arc, (co-)chordal, (co-)comparability, pseudo-split and series-parallel.

Proof. Circle. Using the characterization of circle graphs due to Bouchet [5],
we show that the graph in Fig. 13 is not a circle graph. Further, the graph in
Fig. 15 is a circle graph, but has no strict outerconfluent drawing.

Circular-arc. Circular-arc graphs do not contain every complete bipartite
graph, but obviously those have a strict-confluent drawing. Conversely this class
contains W5 and, as observed by Eppstein et al. [14] W5 is not a SOC graph.

Chordal. C4 is not a chordal graph by definition, but it is a SOC graph.
Let G = (V,E) be a complete graph on five vertices. Attach for every (u, v) ∈ E



On Strict (Outer-)Confluent Graphs 25

Fig. 18: From left to right: the graphs W5, W7 and BW3 used in Def. 1.

a vertex w with edges (u,w) and (w, v). This graph is chordal, but it does not
even have a confluent drawing by [9].

Co-chordal. C5 is self-complementary and has a strict outerconfluent draw-
ing, but co-chordal graphs do not contain the complement of Cn+4. Adding the
dashed edge in Fig. 15 makes the graph co-chordal, but the crossings are not
representable, so there is no strict outerconfluent drawing.

Comparability. The graph in Fig. 14 has a strict outerconfluent drawing,
but is among the forbidden subgraphs of the class of comparability graphs [18].
Any order of BW3 has a crossing that is not representable. So it has no strict
outerconfluent drawing, but BW3 has a transitive orientation as shown in Fig. 15.

Co-comparability. C5 is not a co-comparability graph, but it is a SOC
graph. Fig. 16 shows a graph which is verified to not be SOC by exhaustively
searching all orders for represented crossings, but it has an intersection repre-
sentation of x-monotone curves between two parallel lines [25].

Pseudo-split. C4 is not a pseudo split graph, but it is a SOC graph. Any
order of W5 has a crossing that is not representable. So it has no outerconfluent
drawing, but W5 is a pseudo-split graph by definition (take the central vertex
as the clique and the other five vertices as the C5).

Series-parallel. K4 is not a series-parallel graph by definition, but it is a
SOC graph. Let G = (V,E) be a domino graph. Subdivide the chord (u, v) with
a vertex w. This is a series-parallel graph, but any crossing between (u,w) or
(v, w) and another edge cannot be represented. ut

Corollary 1. These graph classes are not contained in the class of SOC graphs:
alternation, circle-trapezoid, polygon-circle, interval-filament, subtree-filament,
(outer-)string.

Proof. Comparability graphs are known to be contained in alternation graphs [29],
but comparability graphs are not a subclass of SOC graphs. All other classes fol-
low directly, since they are known to be superclasses of circle graphs. ut

F Omitted Proofs from Section 7

Observation 2 Let H = (V,E) be a graph of clique-width k ≥ 2, let V1, V2 be
two disjoint subsets of V , and let s ∈ V \ (V1 ∪V2). Then there exists a (3k+ 1)-
expression defining H so that in the final labeling all vertices in V1 receive label
1, all vertices in V2 receive label 2, s receives label 3 and all remaining vertices
receive label 4.



26 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

Proof. Consider an arbitrary k-expression of H which ends by setting all labels
in H to 1. Now adjust the k-expression as follows: whenever a vertex in V1
receives a label i, replace it with i + k, and whenever a vertex in V2 receives a
label i, replace it with i + 2k, and use a special label 3k + 1 for s. This new
(3k + 1)-expression constructs H and assigns all vertices in V \ (V1 ∪ V2 ∪ {s}),
V1, V2 and {s} the labels 1, k+ 1, 2k+ 1, and 3k+ 1, respectively. To complete
our construction, we merely permute the labels as required. ut

Theorem 9. Every tree-like ∆-SOC graph has clique-width at most 16.

Proof. Let us consider an arbitrary tree-like ∆-SOC graph G = (V,E) and let
us fix a tree-like strict outerconfluent drawing D = (N, J, Γ ) of G; let Γc be the
set of arcs with at least one endpoint in J . Based on D, we partition E into the
edge sets Ec and Es as above. Let Vc be the set of vertices incident to at least
one edge in Ec and let Gc = (Vc, Ec).

Note that Dc = (N, J, Γc) is topologically equivalent to a tree (plus some
singletons in V \ Vc), and let us choose an arbitrary arc in Γc as the root r. Our
aim will be to pass through Dc in a leaves-to-root manner so that at each step we
construct a 16-expression for a certain circular segment of the outer face. This
way, we will gradually build up the 16-expression for G from modular parts, and
once we reach the root we will have a complete 16-expression for G.

Our proof will perform induction along a notion of depth, which is tied to
the tree-like structure of Dc. We say that each node corresponding to a vertex
in Vc has depth 0, and we define the depth of each junction j as follows: j has
depth ` if ` is the minimum integer such that at least two of the arcs incident
to j lead to junctions or nodes of depth at most ` − 1 (for example, a junction
of depth 1 has 2 arcs leading to nodes, while a junction of depth 2 has at least
one arc leading to a junction of depth 1 and the other arc leads to either a node
or another junction of depth 1). We call an arc between a junction j of depth i
and a junction (or node) of depth smaller than i a down-arc for j.

Another notion we will use is that of a region, see Fig. 19: the region defined
by a junction j and one of its down-arcs a is the segment of the boundary of the
outer face delimited by the “right-most” and “’left-most” paths (not necessarily
smooth), which leave j through a. Crucially, we observe that the set VR of
all vertices corresponding to nodes in a region R can be partitioned into the
following four groups:

A. one vertex on the left border of R;
B. up to one vertex that is not on the left border but on the right border of R;
C. vertices not on the border which have no neighbors outside of R;
D. vertices not on the border which have at least one neighbor outside of R;

and furthermore we observe that all vertices of group D have precisely the same
neighborhood outside of R (in particular, they must all have a path to j which
forms a smooth curve). In the degenerate case of nodes (which have depth 0),
we say that the region is merely the point of that node (and the corresponding
vertex then belongs to group A).



On Strict (Outer-)Confluent Graphs 27

j

a1

a2

R1

R2

A

B

A

B

s
R3

C/D

C/D j′
a

Fig. 19: Sketch of a tree-like ∆-SOC graph G with the regions and junctions used
in the inductive construction of the 16-expression defining G.

As the first step of our procedure, for each v ∈ Vc we create a 1-expression
1(v) (i.e., we create each vertex in Vc as a singleton). For the second step, we
apply induction along the depth of junctions as follows. As our inductive hy-
pothesis at step i, we assume that for each junction j′ of depth at most i − 1
and each of its down-arcs defining a region R′, there exists a 16-expression which
constructs G[VR′ ] and labels VR′ by using labels 1, 2, 3, 4 for vertices in groups
A, B, C, D, respectively. We observe that the inductive hypothesis holds at step
1: indeed, all regions at depth 0 consist of a node, and we already created the
respective 1-expressions for all such nodes.

Our aim is now to use the inductive hypothesis for i to show that the inductive
hypothesis also holds for i+1—in other words, we need to obtain a 16-expression
which constructs and correctly labels the graph G[VR] for the region R defined by
each junction j of depth i and down-arc a. Assume that a is incident to a junction
j′ with down-arcs a1 and a2, defining the regions R1 and R2, respectively. By
our inductive assumption, G[VR1 ] and G[VR2 ] both admit a 16-expression which
labels the vertices based on their group in the desired way. Now observe that
R is composed of the following parts: region R1 on the “left”, region R2 on the
“right”, and a segment R3 on the boundary of the outer face between R1 and
R2. Crucially, we make the following observations for vertices VR3

in R3:

– none of the vertices in VR3 are incident to an edge in Ec;
– G[VR3

] is outerplanar;
– at most one vertex, denoted s, in VR3 has two neighbors outside of VR3 ,

notably the rightmost vertex in VR1
and the leftmost vertex in VR2

;
– all vertices other than s in VR3 either have no neighbors outside of VR3 , or

have one neighbor outside of VR3—in particular, either the rightmost vertex
in VR1

or the leftmost vertex in VR2
.

At this point, we can finally invoke Observation 2. In particular, since G[VR3
]

is outerplanar, it has clique-width at most 5, and by using the observation we can



28 Henry Förster, Robert Ganian, Fabian Klute, and Martin Nöllenburg

construct a 16-expression which labels all vertices adjacent to the right border
of R1 with label 1, all vertices adjacent to the left border of R2 with label 2,
vertex s with label 3, and all other vertices with label 4. Now all that remains
is to:

1. relabel labels 1–4 used in the 16-expression for R2 to labels 5–8 and the
labels 1–4 used in the 16-expression for R3 to labels 9–12, respectively;

2. use the ⊕ operator to merge these 16-expressions,
3. use the ηi,j operator to add edges between VR1

∪ VR2
and VR3

as required,
in particular: η9,2, η11,2, η10,5, η11,5;

4. use the η4,8 operator to add all pairwise edges between the groups D of VR1

and VR2 in case junction j′ smoothly connects arcs a1 and a2;
5. use the pi→j operator to relabel as required by the inductive assumption,

where depending on the junction type of j′ group D of VR either consist of
the union of the groups D of VR1

and VR2
or it is identical to group D of just

one of them. Group A coincides with group A of VR1
and group B coincides

with group B of VR2 . The remaining vertices form group C.

The inductive procedure described above runs until it reaches the root arc r,
and it is easy to observe that at this point we have constructed two 16-expressions
corresponding to the two regions, say R∗1 and R∗2, defined by paths which start
at r and go in the two possible directions. The two remaining regions on the
outer face between R∗1 and R∗2 are then handled completely analogously as the
regions denoted R3 in our inductive step. Hence we conclude that there indeed
exists a 16-expression which constructs G. ut


	On Strict (Outer-)Confluent Graphs

