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Abstract. In this paper, we study arrangements of orthogonal circles,
that is, arrangements of circles where every pair of circles must either be
disjoint or intersect at a right angle. Using geometric arguments, we show
that such arrangements have only a linear number of faces. This implies
that orthogonal circle intersection graphs have only a linear number of
edges. When we restrict ourselves to orthogonal unit circles, the resulting
class of intersection graphs is a subclass of penny graphs (that is, contact
graphs of unit circles). We show that, similarly to penny graphs, it is NP-
hard to recognize orthogonal unit circle intersection graphs.

1 Introduction

For the purpose of this paper, an arrangement is a (finite) collection of curves
such as lines or circles in the plane. The study of arrangements has a long his-
tory; for example, Griinbaum studied arrangements of lines in the projective
plane. Arrangements of circles and other closed curves have also been studied ex-
tensively . An arrangement is simple if no point of the plane belongs
to more than two curves and every two curves intersect. A face of an arrange-
ment A in the projective or Euclidean plane P is a connected component of the
subdivision induced by the curves in A, that is, a face is a component of P\ |J A.

For a given type of curves, people have investigated the maximum number of
faces that an arrangement of such curves can form. In 1826, Steiner [23] showed
that a simple arrangement of straight lines can have at most (}) H?) + (8)
faces while an arrangement of circles can have at most 2 ((g) + (8)) faces.

Alon et al. and Pinchasi studied the number of digonal faces, that
is, faces that are bounded by two edges, for various kinds of arrangements of
circles. For example, any arrangement of n unit circles has O(n*/®logn) digonal
faces and at most n + 3 digonal faces if every pair of circles intersects ,
whereas arrangements of circles with arbitrary radii have at most 20n —2 digonal
faces if every pair of circles intersects [2].

The same arrangements can, however, have quadratically many triangular
faces, that is, faces that are bounded by three edges. A lower bound exam-
ple with quadratically many triangular faces can be constructed from a simple
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Fig. 1: Circles o and 8 are orthogonal if and only if AC,XCj is orthogonal.

arrangement A of lines by projecting it on a sphere (disjoint from the plane con-
taining A) and having each line become a great circle. This is always possible
since the line arrangement is simple; for more details see [12, Section 5.1]. In
this process we obtain 2p3 triangular faces, where p3 is the number of triangular
faces in the line arrangement. The great circles on the sphere can then be trans-
formed into a circle arrangement in a different plane using the stereographic
projection. This gives rise to an arrangement of circles with 2ps triangular faces
in this plane. Firedi and Palédsti |14] provided simple line arrangements with
n?/3+4 O(n) triangular faces. With the argument above, this immediately yields
a lower bound of 2n?/3+0O(n) on the number of triangular faces of arrangements
of circles. Felsner and Scheucher [13] showed that this lower bound is tight by
proving that an arrangement of pseudocircles (that is, closed curves that can
intersect at most twice and no point belongs to more than two curves) can have
at most 2n?/3 + O(n) triangular faces.

One can also specialize circle arrangements by fixing an angle (measured as
the angle between the two tangents at either intersection point) at which each
pair of intersecting circles intersect; this was recently discussed by Eppstein [10].
In this paper, we consider arrangements of circles with the restriction that each
pair of circles must intersect at a right angle. An arrangement of circles in which
each intersecting pair intersect at a right angle is called orthogonal. We make
the following simple observation regarding orthogonal circles; see Fig.

Observation 1 Let o and B be two circles with centers C,, Cg and radii ro,
g, respectively. Then o and B are orthogonal if and only if r2 + r% =|C,C3)?.

We discuss further basic properties of orthogonal circles in Section [2} In
particular, in an arrangement of orthogonal circles no two circles can touch and
no three circles can intersect at the same point.

The main result of our paper is that arrangements of n orthogonal circles
have at most 14n intersection points and at most 15n + 2 faces; see Theorem [I]
(in Section . This is different from arrangements of orthogonal circular arcs,
which can have quadratically many quadrangular faces; see the arcs inside the
blue square in Fig. |5} In Section we also consider small (that is, digonal and
triangular) faces and provide bounds on the number of such faces in arrange-
ments of orthogonal circles.

Given a set of geometric objects, their intersection graph is a graph whose
vertices correspond to the objects and whose edges correspond to the pairs of in-
tersecting objects. Restricting the geometric objects to a certain shape restricts
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(a) a circle passing (b) a circle not passing (c) constructing the inver-
through C, is mapped through C, is mapped sion P’ of a point P w.r.t. «
to a line (and vice versa)  to another circle via a circle 8 orthogonal to «

Fig. 2: Examples of inversion

the class of graphs that admit a representation with respect to this shape. For
example, graphs represented by disks in the Euclidean plane are called disk inter-
section graphs. The special case of unit disk graphs—intersection graphs of unit
disks—has been studied extensively. Recognition of such graphs as well as many
combinatorial problems restricted to these graphs such as coloring, independent
set, and domination are all NP-hard [6]; see also the survey of Hlinény and Kra-
tochvil |17]. Instead of restricting the radii of the disks, people have also studied
restrictions of the type of intersection. If the disks are only allowed to touch, the
corresponding graphs are called coin graphs. Koebe’s classical result says that
the coin graphs are exactly the planar graphs. If all coins have the same size,
the represented graphs are called penny graphs. These graphs have been studied
extensively, too [4,8[11]. For example, they are NP-hard to recognize [3}7].

As with the arrangements above, we again consider a restriction on the in-
tersection angle. We define the orthogonal circle intersection graphs as the inter-
section graphs of arrangements of orthogonal circles. In Section [d] we investigate
properties of these graphs. For example, similar to the proof of our linear bound
on the number of intersection points for arrangements of orthogonal circles (The-
orem , we observe that such graphs have only a linear number of edges.

We also consider orthogonal unit circle intersection graphs, that is, orthogonal
circle intersection graphs with a representation that consists only of unit circles.
We show that these graphs are a proper subclass of penny graphs. It is NP-hard
to recognize penny graphs [9]. We modify the NP-hardness proof of Di Battista
et al. [7, Section 11.2.3], which uses the logic engine, to obtain the NP-hardness
of recognizing orthogonal unit circle intersection graphs (Theorem [4)).

2 Preliminaries

We will use the following type of M&bius transformation [20]. Let o be a circle
having center at C', and radius r,. The inversion with respect to « is a mapping
that maps any point P # C, to a point P’ on the ray C,P so that |C,P’| -
|Co P| = r2. Inversion maps each circle not passing through C,, to another circle
and a circle passing through C,, to a line; see Fig. [2| Inversion and orthogonal
circles are closely related. For example, in order to construct the image P’ of
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Fig. 3: (a) Three pairwise intersecting circles, the red in- Fig. 4: Illustration for
version circle is centered at X; (b) image of the inversion. the proof of Lemma |2|

some point P that lies inside the inversion circle «, consider the intersection
points X and Y of a and the line that is orthogonal to the line through C,, and P
in P; see Fig. The point P’ then is simply the center of the circle § that is
orthogonal to o and goes through X and Y. This follows from the similarity of
the orthogonal triangles AC, X P’ and AC,X P. A useful property of inversion,
as of any other Mobius transformation, is that it preserves angles. Using inversion
we can easily show several properties of orthogonal circles.

Lemma 1. No orthogonal circle intersection graph contains a K4. In other
words, in an arrangement of orthogonal circles there cannot be four pairwise
orthogonal circles.

Proof. Assume that there are four pairwise orthogonal circles a, 5, 7, and §.
Let X and Y be the intersection points of o and . Consider the inversion with
respect to a circle o centered at X. The images of o and [ are orthogonal lines
o' and B’ that intersect at Y’, which is the image of Y; see Fig. [3 The image
of 7 is a circle 7/ centered at Y’ but so is the image §’ of §. Thus 7 and §’ are
either disjoint or equal, but not orthogonal to each other, a contradiction. a

Lemma 2. No orthogonal circle intersection graph contains an induced Cy. In
other words, in an arrangement of orthogonal circles there cannot be two pairs of
circles such that each circle of one pair is orthogonal to each circle of the other
pair and the circles within the pairs are not orthogonal.

Proof. Assume there are two pairs («, 3) and (v, §) of circles such that the circles
within each pair do not intersect each other and each circle of one pair intersects
both circles of the other pair. Consider an inversion via a circle o centered at
one of the intersection points of the circles o and 6. In the image they will
become lines o’ and ¢’. The image 3’ of the circle 8 must intersect ¢’ but not
o', therefore, its center must lie on the line ¢’ and it should be to one side of the
line o/; see Fig. |4l Similarly the center of the image 4’ of the circle v must lie
on the line o/ and 7/ should be to one side of the line ¢’. Shift the drawing so
that the intersection of o/ and 4’ is at the origin O and observe that the triangle
ACgOC, is orthogonal, where Cz and C+ are the centers of the circles 4’ and
~'. Let X be the intersection point of these circles that is closer to the origin.
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(a) (b)
Fig.5: Apollonian circles
consisting of two parabolic ~ Fig. 6: (a) Apollonian circles consisting of an elliptic (in
pencils of circles (one in  gray) and hyperbolic (in black) pencil of circles; (b) its
black, the other in gray). inversion via a circle centered at A (in red).

This point X is contained in the triangle ACg OC, . Therefore the triangle
ACg XC., cannot be orthogonal—a contradiction. O

A pencil is a family of circles who share a certain characteristic. In a parabolic
pencil all circles have one point in common, and thus are all tangent to each
other; see Fig. 5| In an elliptic pencil all circles go through two given points; see
the gray circles in Fig. [6al In a hyperbolic pencil all circles are orthogonal to a
set of circles that go through two given points, that is, to some elliptic pencil;
see the black circles in Fig.

For an elliptic pencil whose circles share two points A and B and the corre-
sponding hyperbolic pencil, the circles in the hyperbolic pencil possess several
properties useful for our purposes [20]. Their centers are collinear and they con-
sist of non-intersecting circles that form two nested structures of circles, one
containing A, the other one containing B in its interior; see Fig.

Two pencils of circles such that each circle in one pencil is orthogonal to
each circle in the other are called Apollonian circles. There can be two such
combinations of pencils, that is, one with two parabolic pencils and one with an
elliptic and a hyperbolic pencil. We focus on the latter since such Apollonian
circles contain arbitrarily large arrangements of orthogonal circles, that is, two
orthogonal circles from the elliptic pencil and arbitrary many circles from the
hyperbolic pencil. Equivalently, such Apollonian circles are an inversion image
of a family of concentric circles centered at some point X and concurrent lines
passing through X; see Fig. [6bl We use this equivalence in the next proof.

Lemma 3. Three circles such that one is orthogonal to the two others belong to
the same family of Apollonian circles. Two sets of circles such that each circle
in one set is orthogonal to each circle in the other set and each set has at least
two circles belong to the same family of Apollonian circles. In particular the set
belonging to the elliptic pencil can contain at most two circles.

Proof. Consider three circles such that one is orthogonal to two others. If all
three are pairwise orthogonal, then their inversion via a circle centered at one
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of their intersection points (see Fig. is two perpendicular lines and a circle
centered at their intersection point (see Fig. , therefore, they belong to the
same family of Apollonian circles. If two circles do not intersect, then by [20,
Theorem 13|, it is always possible to invert them into two concentric circles. Since
inversion preserves angles, the image of the third circle must be orthogonal to
both concentric circles and therefore it must be a straight line passing through
the center of both circles. Therefore, the three circles belong to the same family
of Apollonian circles.

Consider now two sets S7 and S5 of circles such that each circle in one set is
orthogonal to each circle in the other set and each set has at least two circles.
By Lemma [2| there must be two circles o and S in one of the sets, say Si,
that are orthogonal. Consider an inversion via a circle o centered at one of the
intersection points X of the circles o and B. In the image they will become
orthogonal lines o’ and 3’ intersecting at a point Y. Because inversion preserves
angles, the image of each circle in S5 is a circle centered at Y. Since Sy contains
at least two circles, the image of each circle in S; must be orthogonal to two
circles centered at Y, therefore, it must be a straight line passing through Y.
Thus, the circles in S; and S belong to the same family of Apollonian circles
and S; contains at most two circles. O

Because each triangular or quadrangular face consists of either three circles
such that one is orthogonal to two others or two pairs of circles such that each
circle in one pair is orthogonal to each circle in the other pair, we obtain the
following observation from Lemma

Observation 2 In any arrangement of orthogonal circles, each triangular and
each quadrangular face is formed by Apollonian circles.

3 Arrangements of Orthogonal Circles

In this section we study the number of faces of an arrangement of orthogonal cir-
cles. In Section [3.1] we give a bound on the total number of faces. In Section 3.2}
we separately bound the number of faces formed by two and three edges.

Let A be an arrangement of orthogonal circles in the plane. By a slight
abuse of notation, we will say that a circle a contains a geometric object o and
mean that the disk bounded by « contains o. We say that a circle a € A is
nested in a circle § € A if « is contained in 8. We say that a circle a € A is
nested consecutively in a circle 8 € A if « is nested in 8 and there is no other
circle v € A such that « is nested in v and « is nested in 5. Consider a subset
S C A of maximum cardinality such that for each pair of circles one is nested in
the other. The innermost circle v in S is called a deepest circle in A; see Fig. [7}

Lemma 4. Let a be a circle of radius ro, and let S be a set of circles orthogonal
to a. If S does not contain nested circles and each circle in S has radius at
least ro, then |S| < 6. Moreover, if |S| = 6, then all circles in S have radius o
and « is contained in the union of the circles in S.
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Proof. Let C, be the center of a. Consider any two circles § and v in S with
centers Cg and C,, and with radii rg and r,, respectively. Since rg > 7, and
Ty > T, the edge CgC, is the longest edge of the triangle AC3C,C.; see Fig.
So the angle ZC3C,C, is at least m/3. Thus, |S| < 6.

Moreover, if |S| = 6 then, for each pair of circles 8 and v in S that are
consecutive in the circular ordering of the circle centers around C,,, it holds that
£C03C,C,, = /3. This is only possible if rg = ry = ro. Thus, all the circles in S
have radius r, and « is contained in the union of the circles in S; see Fig.[0b] O

3.1 Bounding the Number of Faces

Theorem 1. FEvery arrangement of n orthogonal circles has at most 14n inter-
section points and 15n + 2 faces.

The above theorem (whose formal proof is at the end of the section) follows
from the fact that any arrangement of orthogonal circles contains a circle o with
at most seven neighbors (that is, circles that are orthogonal to «).

Lemma 5. FEvery arrangement of orthogonal circles has a circle that is orthog-
onal to at most seven other circles.

Proof. If no circle is nested within any other, Lemma[4]implies that the smallest
circle has at most six neighbors, and we are done.

So, among the deepest circles in A, consider a circle a with the smallest
radius. Let r, be the radius of a. Note that « is nested in at least one circle.
Let 8 be a circle such that o and 8 are consecutively nested. Denote the set of
all circles in A that are orthogonal to a but not to 8 by S,. All circles in S, are
nested in (. Since « is a deepest circle, S, contains no nested circles; see Fig. [0al
Since the radius of every circle in S, is at least r,, Lemma [4] ensures that S,
contains at most six circles. Given the structure of Apollonian circles (Lemma |3)),
there can be at most two circles that intersect both a and 3. This together with
Lemma 4| immediately implies that a cannot be orthogonal to more than eight
circles. In the following we show that there can be at most seven such circles.

If there is only one circle intersecting both o and 3, then « is orthogonal to
at most seven circles in total, and we are done.

Otherwise, there are two circles orthogonal to both « and S. Let these circles
be 71 and 2. We assume that S, contains exactly six circles. Hence, by Lemmald]
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(a) the circles of S are  (b)i=4,5=5
in bold black

Fig. 9: Illustrations to the proof of Lemma

all circles in S, have radius r,. Let S, = (Jo, - - ., 05) be ordered clockwise around
a so that every two circles §; and J; with ¢ = j + 1 mod 6 are orthogonal.

Let X and Y be the intersection points of 7, and 7»; see Fig.[9al Note that, by
the structure of Apollonian circles, one of the intersection points, say X, must be
contained inside «, whereas the other intersection point Y must lie in the exterior
of 5. Since the circles in S, are contained in 3, none of them contains Y. Further,
no circle §; in S, contains X, as otherwise the circles d;, o, 71, and o would
be pairwise orthogonal, contradicting Lemma [I} Recall that, by Lemma [ «
is contained in the union of the circles in S,. Since X is not contained in this
union, vy intersects two different circles §; and ¢;, and -y, intersects two different
circles ¢ and 9;. Note that 7, and 7, cannot intersect the same circle ¢ in S,
because ¢, «, 71, and v, would be pairwise orthogonal, contradicting Lemma
Therefore, the indices i, j, k, and [ are pairwise different.

We now consider possible values of the indices ¢, j, k, and [, and show that
in each case we get a contradiction to Lemma[l]or Lemma[2] If j = i +1 mod 6,
then 1, a, d;, and ; would be pairwise orthogonal, contradicting Lemma see
Fig. @ If 5 =i+ 2 mod 6, then 71, d;, d;41, and J; would form an induced Cy
in the intersection graph; see Fig. This would contradict Lemma [2] If j =
i+ 3 mod 6 and k = [+ 3 mod 6, then either k =i+ 1 mod 6 or i = [+ 1 mod 6;
see Fig.[0d] W .l.o.g., assume the latter and observe that then 2, d;, 71, §; would
form an induced Cy, again contradicting Lemma

We conclude that S, contains at most five circles. Together with v and 79,
at most seven circles are orthogonal to a. ad

Using the lemma above and Euler’s formula, we now can prove Theorem [I]

Proof (of Theorem . Let A be an arrangement of orthogonal circles. By
Lemma [5] A contains a circle o orthogonal to at most seven circles. The cir-
cle a yields at most 14 intersection points. By induction, the whole arrangement
has at most 14n intersection points.

Consider the planarization G’ of A, and let n’, m/, f/, and ¢’ denote the
numbers of vertices, edges, faces, and connected components of G’, respectively.
Since every vertex in the planarization corresponds to an intersection, the re-
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sulting graph is 4-regular and therefore m’ = 2n/. By Euler’s formula, we obtain
f'=n'+14 (. This yields f' < 15n + 1 since n’ < 14n and ¢’ < n. O

3.2 Bounding the Number of Small Faces

In the following we study the number of faces of each type, that is, the number of
digonal, triangular, and quadrangular faces. We begin with some notation. Let A
be an arrangement of orthogonal circles in the plane. Let S be some subset of
the circles of A. A face in S is called a region in A formed by S; see for instance
Fig. Note that each face of A is also a region.

Let s be the region formed by some circular arcs ay, as, ..., a; enumerated in
counterclockwise order around s. For an arc a; with i € {1,...,k}, let « be the
circle that supports a;. If C, = (24, Yo ) is the center of o and r,, its radius, we
can write o as {Cy + ro(cost,sint): t € [0,2n]}. Let u and v be the endpoints
of a; so that we meet u first when we traverse s counterclockwise when starting
outside of a;. Let u = C,, + ro(costy,sinty) and v = Cy, + 14 (costa, sints). We
say that the region s subtends an angle in the circle « of size Z(s,a;) = ta — 1
with respect to the arc a;. Note that Z(s,a;) is negative if a; forms a concave
side of s. If the circle a forms only one side of the region s, then we just say that
the region s subtends an angle in the circle « of size Z(s, ) = to —t;. Moreover,
if s is a digonal region, that is, it is formed by only two circles « and (3, then we
simply say that 8 subtends an angle of Z(8, ) =ts — t; in « to mean Z(s, ).

By total angle we denote the sum of subtended angles by s with respect to
all the arcs that form its sides, that is, Zle Z(s,a;).

We now give an upper bound on the number of digonal and triangular faces in
an arrangement 4 of n orthogonal circles. The tool that we utilize in this section
is the Gauss—Bonnet formula [24] which, in the restricted case of orthogonal
circles in the plane, states that, for every region s formed by some circular arcs
ai,as,...,ak, it holds that

i km
ZZ(&%‘) + 5 = 27,

i=1

This formula implies that each digonal or triangular face subtends a total angle
of size m and of size /2, respectively. Thus, we obtain the following bounds.
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Theorem 2. FEvery arrangement of n orthogonal circles has at most 2n digo-
nal faces and at most 4n triangular faces.

Proof. Because faces do not overlap, each digonal or triangular face uses a unique
convex arc of a circle bounding this face. Therefore, the sum of angles subtended
by digonal or triangular faces formed by the same circle must be at most 2.
Analogously, the sum of total angles over all digonal or triangular faces cannot
exceed 2n7. By the Gauss—Bonnet formula each digonal or triangular face sub-
tends a total angle of size 7 or 7/2, respectively. This gives an upper bound of
2n on the number of digonal faces and an upper bound of 4n on the number of
triangular faces. a

Theorem [2| can be generalized to all convex orthogonal closed curves since
the Gauss—Bonnet formula does not require curves to be circular. In contrast to
this, for example, a grid made of axis parallel rectangles has quadratically many
quadrangular faces. This makes circles a special subclass of convex orthogonal
closed curves. We refer to the full version for more details [5].

The Gauss—Bonnet formula does not help us to get an upper bound on the
number of quadrangular faces. Using Observation 2] however, it is possible to
restrict the types of quadrangular faces to several shapes and obtain bounds
on the number of faces of each type. Apart from being interesting in its own
right, such a bound also provides a bound on the total number of faces in an
arrangement of orthogonal circles. Namely, since the average degree of a face in
an arrangement of orthogonal circles is 4, a bound on the number of faces of
degree at most 4 gives a bound on the number of all faces in the arrangement
(via Euler’s formula). Unfortunately, the bound on the number of quadrangular
faces that we achieved was 17n and thus higher than the bound 151 + 2 that we
now have for the number of all faces in an arrangement of n orthogonal circles.

4 Intersection Graphs of Orthogonal Circles

Given an arrangement A of orthogonal circles, consider its intersection graph,
which is the graph with vertex set A that has an edge between any pair of
intersecting circles in A. Lemmas [I] and [2] imply that such a graph does not
contain any K, and any induced Cy. We show that such graphs can be non-
planar (Lemmalﬁ[)7 then we bound their edge density (Theorem7 and finally we
consider the intersection graphs arising from orthogonal unit circles (Theorem.

Lemma 6. For every n, there is an intersection graph of orthogonal circles that
contains K,, as a minor. The representation uses circles of three different radii.

Proof. Let a chain be an arrangement of orthogonal circles whose intersection
graph is a path. We say that two chains Cy and Cy cross if two disjoint circles «
and S of one chain, say C;, are orthogonal to the same circle v of the other
chain Cj; see Fig. (left). If two chains cross, their paths in the intersection
graph are connected by two edges; see the dashed edges in Fig. (right).
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Fig. 12: Construction of an orthogonal circle intersection graph that contains K, as a
minor (here n = 5).

Consider an arrangement of n rectilinear paths embedded on a grid where
each pair of curves intersect exactly once; see the inset in Fig. We convert the
arrangement of paths into an arrangement of chains such that each pair of chains
crosses; see Fig. Now consider the intersection graph of the orthogonal circles
in the arrangement of chains. If we contract each path in the intersection graph
that corresponds to a chain, we obtain K. a

Next, we discuss the density of orthogonal circle intersection graphs. Gyarfas
et al. [16] have shown that any Cy-free graph on n vertices with average degree
at least a has clique number at least a?/(10n). Due to Lemma [1} we know that
orthogonal circle intersection graphs have clique number at most 3. Thus, their
average degree is bounded from above by v/30n, leading to at most VT.5nt edges
in total. However, Lemma [5| implies the following stronger bound.

Theorem 3. The intersection graph of a set of n orthogonal circles has at most
n edges.

Proof. The geometric representation of an orthogonal circle intersection graph is
an arrangement of orthogonal circles. By Lemma[f] an arrangement of n orthog-
onal circles always has a circle orthogonal to at most seven circles. Therefore, the
corresponding intersection graph always has a vertex of degree at most seven.
Thus, it has at most 7n edges. a

The remainder of this section concerns a natural subclass of orthogonal circle
intersection graphs, the orthogonal unit circle intersection graphs. Recall that
these are orthogonal circle intersection graphs with a representation that consists
of unit circles only. As Fig.[I3a]shows, every representation of an orthogonal unit
circle intersection graph can be transformed (by scaling each circle by a factor of
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(a) all orthogonal unit circle inter- (b) penny graphs that aren’t orthog-
section graphs are penny graphs onal unit circle intersection graphs

Fig. 13: Penny graphs vs. orthogonal unit circle intersection graphs

8d8- & B

) 1.5n digonal faces ) 2n triangular faces (c) 4(n — 3) quadrangular faces

Fig. 14: Arrangements of n orthogonal circles with many digonal, triangular, and
quadrangular faces.

ﬂ/ 2) into a representation of a penny graph, that is, a contact graph of equal-
size disks. Hence, every orthogonal unit circle intersection graph is a penny
graph — whereas the converse is not true. For example, C4 or the 5-star are
penny graphs but not orthogonal unit circle intersection graphs (see Fig. [L3b)).

Orthogonal unit circle intersection graphs being penny graphs implies that
they inherit the properties of penny graphs, e.g., their maximum degree is at
most six and their edge density is at most |3n — v/12n — 6], where n is the
number of vertices Theorem 13.12, p. 211]. Because triangular grids are
orthogonal unit circle intersection graphs, this upper bound is tight.

As it turns out, orthogonal unit circle intersection graphs share another fea-
ture with penny graphs: their recognition is NP-hard. The hardness of penny-
graph recognition can be shown using the logic engine Section 11.2], which
simulates an instance of the Not-All-Equal-3-Sat (NAE3SAT) problem. We es-
tablish a similar reduction for the recognition of orthogonal unit circle intersec-
tion graphs; the details are in the appendix.

Theorem 4. It is NP-hard to recognize orthogonal unit circle intersection graphs.

5 Discussions and Open Problems

In Section (3| we have provided upper bounds for the number of faces of an
orthogonal circle arrangement. As for lower bounds on the number of faces, we
found only very simple arrangements containing 1.5n digonal, 2n triangular, and
4(n — 3) quadrangular faces; see Figs. and respectively. Can we
construct better lower bound examples or improve the upper bounds?
Recognizing (unit) disk intersection graphs is IR-complete . But what is
the complexity of recognizing (general) orthogonal circle intersection graphs?

Acknowledgments. We thank Alon Efrat for useful discussions and an anonymous
reviewer for pointing us to the Gauss-Bonnet formula.
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Appendix:
Recognizing Orthogonal Unit Circle Intersection Graphs

In this section, we show how to realize the logic engine with orthogonal unit
circle intersection graphs. The logic engine simulates the Not-All-Equal-3-Sat
(NAE3SAT) problem where a set C of clauses each containing three literals
from a set of boolean variables U is given and the question is to find a truth
assignment to the variables so that each clause contains at least one true literal
and at least one false literal.

V‘l'
9=

0!‘!;!'!‘!‘!‘!ﬁ‘l‘l’l’l‘l‘ L0002,

Fig. 15: Orthogonal unit circle representation of the universal part of the logic engine;
only half of the drawing is present, the other half is symmetric

Theorem 4. [t is NP-hard to recognize orthogonal unit circle intersection graphs.

Proof. We closely follow the description from |7, Section 11.2] and use their
notations and definitions. The logic engine consists of the following parts (we
will mostly refer to Figs. [15] and [17] to explain how the parts of the logic engine
are connected). The frame and armatures (drawn blue and black respectively
in Fig. only half of the drawing is illustrated, the other half is symmetric
with respect to the shaft of the logic engine, which is defined below) for the
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Fig. 16: Gadgets for the logic engine

logic graph are built of hexagonal blocks, as shown in Fig. [I6a] whose orthogonal
unit circle intersection representation is shown in Fig. It is easy to see that
they are uniquely drawable (up to rotation, reflection, and translation) since K3
has a unique orthogonal unit circle intersection representation. Each armature
corresponds to a variable in U.

A chain graph (represented by gray circles in Fig. is a sequence of links,
as shown in Fig. whose orthogonal unit circle intersection representation is
shown in Fig. [I6] The number of links in a chain corresponds to the number of
clauses in C. The shaft (green in Fig. is a simple path and serves as an axle
for the armatures, that is, the armatures can be flipped around the shaft. Each
armature corresponding to a variable x; has two chains a; and @; each suspended
between one of the ends of the armature and the shaft. For that reason in an
orthogonal unit circle intersection representation each chain is taut.

So far we have described the wuniversal part of the logic engine, that is,
the part that only depends on the number of clauses in C' and the number of
variables in U; it is illustrated in Fig.[I5] The frame, armatures, and chain graphs
have a unique orthogonal unit circle intersection representation up to flipping
armatures (see Fig. , since they are built up of hexagonal blocks which are
uniquely drawable. We still need to show that the shaft is taut. This is enforced
by the bottom part of the frame. Consider the middle horizontal sequence of
circles in the bottom part of the frame that spans the frame from the left side
to the right; in light blue in Fig. [[5] It is easy to see that the shaft must be
drawn as this sequence, because it consists of the same number of circles and
must also span the frame from the left side to the right. Since the sequence
is taut, the shaft is also taut. Notice that there is still the freedom of flipping
each armature together with its chains around the shaft, that is, it can take two
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Fig. 17: Orthogonal unit circle representation of a customized logic engine; only half
of the drawing is present. The neighboring flagged links demarcated by the dashed
rectangle collide if and only if they are flipped so that they point towards each other;

see Fig.

possible positions where one part of the armature is either above or below the
shaft. This is the flexibility that allows our logic engine to encode a solution of
a NAE3SAT instance.

Now let us show how to customize the logic engine according to an instance
of NAE3SAT. A chain link graph can be extended to a flagged link by the
addition of three new vertices as shown in Fig. whose orthogonal unit circle
representation is shown in Fig. Note that it also has a unique drawing.
To simulate the given NAE3SAT instance we replace link graphs with flagged
link graphs according to the incidence between literals and clauses. If the literal
x; € U appears in clause ¢; € C, then link ¢ of chain a; is unflagged. If the literal
Z; € U appears in clause ¢; € C, then link 4 of of chain a; is unflagged. For an
example see Fig.

It is easy to see that by adjusting the sizes of the frame and the armatures
we can ensure that in an orthogonal unit circle intersection representation of
the logic engine two flagged links which lie in the same row and are attached
to chains of adjacent armatures collide if and only if they are flipped so that
they point towards each other; see Fig. Similarly we can ensure that any flag
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Fig. 18: The neighboring flagged links collide if and only if they are flipped so that
they point towards each other.

attached to the chain of the outermost armature collides with the frame if it
points toward the front edge of the frame, and any flag attached to the chain
of the innermost armature collides with that armature if it points toward the
rear. Therefore, we can use |7, Theorem 11.2] to show that the corresponding
customized logic engine has an orthogonal unit circle representation if and only
if the corresponding instance of NAE3SAT is a yes-instance. a
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