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Abstract. We prove that the exact crossing number of a graph can be
efficiently computed for simple graphs having bounded vertex cover. In
more precise words, Crossing Number is in FPT when parameterized
by the vertex cover size. This is a notable advance since we know only
very few nontrivial examples of graph classes with unbounded and yet
efficiently computable crossing number. Our result can be viewed as a
strengthening of a previous result of Lokshtanov [arXiv, 2015] that Op-

timal Linear Arrangement is in FPT when parameterized by the
vertex cover size, and we use a similar approach of reducing the prob-
lem to a tractable instance of Integer Quadratic Programming as
in Lokshtanov’s paper.

Keywords: Graph drawing; crossing number; parameterized complex-
ity; vertex cover

1 Introduction

The crossing number cr(G) of a graphG is the minimum number of pairwise edge
crossings in a drawing of G in the plane. We refer to Section 2 for the definitions
of a drawing and edge crossings. Finding the crossing number of a graph is one
of the most prominent combinatorial optimization problems in graph theory and
is NP-hard already in very special cases, e.g., even when considering a planar
graph with one added edge [5]. Moreover, we know that computing the crossing
number is APX-hard [3], i.e., there does not exist a PTAS (unless P=NP).

On the other hand, there is an algorithm [1] that approximates not directly
the crossing number, but the quantity n+cr(G) where n = |V (G)|; its currently
best incarnation does so within a factor of O(log2 n) [11]. The first sublinear
approximation factor of Õ(n0.9) has been achieved by [9]. Concerning rectilinear
drawings of dense graphs there is another recent approximation result [12]. Much
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better crossing number approximation results are known for some restricted
graph classes, such as for graphs embeddable in a fixed surface [15,17] and for
graphs from which few edges or vertices can be removed to make them planar
[18,4,6,7].

Despite this recent progress in crossing number approximations in special
cases, there are nearly no nontrivial formulas or efficient algorithms for comput-
ing the exact crossing number in sufficiently “rich” graph classes. Even for very
nicely structured classes such as the complete graphs, the complete bipartite
graphs and the toroidal grids (Cartesian products of cycles), their exact crossing
numbers are only conjectured, but not proved (e.g., we do not know cr(K13) ).

One notable exception (to near-impossibility of computing efficiently the ex-
act crossing number) is that the exact crossing number can be efficiently com-
puted (even in linear time) when it is bounded [16,19]; more precisely, that
Crossing Number is in linear-time FPT when parameterized by the solu-
tion value. However, considering nontrivially rich graph classes with unbounded
crossing number, there currently seems to be only one such further efficient re-
sult by Biedl et al. [2]; computing the exact crossing number for maximal graphs
of pathwidth exactly 3.

Our paper brings one more small piece to this crossing-number puzzle. A
vertex cover in a graph G is a set X of vertices of G such that every edge of G
has at least one end in X . We prove that it is possible to compute in FPT the
exact crossing number of a simple graph G when the minimum vertex cover size
of G is bounded as a parameter.

Theorem 1. Given a simple graph G, the problem to compute the crossing num-
ber of G and the corresponding optimal drawing of G is fixed-parameter tractable
with respect to the parameter k = |X | where X ⊆ V (G) is a vertex cover of G.

We remark that computing the minimum vertex cover X is itself in FPT when
parameterized by |X | [10], and so we do not need X on the input.

Although bounding the vertex cover also bounds the pathwidth of a graph,
our Theorem 1 is incomparable with [2] since their result gives exact values only
for pathwidth 3 (for higher values of pathwidth [2] gives an approximation).
Another notable point is that the classes of graphs of bounded vertex cover
are monotone (closed under taking subgraphs), while the exact algorithm in [2]
requires maximal graphs of pathwidth 3 (again, for non-maximal such graphs
there is only a 2-approximation).

In the algorithm of Theorem 1 we follow the approach of Lokshtanov [20],
who showed that Integer Quadratic Programming is in FPT when param-
eterized by the number of variables and the maximum of the absolute values
of the coefficients. Lokshtanov then used his IQP algorithm to show that the
problem Optimal Linear Arrangement of a graph G is in FPT when pa-
rameterized by the minimum vertex cover size of G. In the Optimal Linear

Arrangement problem of a graph G, the task is to find a linear ordering of the
vertex set of G which minimizes the sum of “lengths” of the edges of G. With
respect to this, it is worth to note that the first NP-hardness proof for Crossing



Number [14] used a simple reduction from Optimal Linear Arrangement,
one which asymptotically preserves almost any reasonable graph parameter in-
cluding vertex cover. Although we cannot directly apply our algorithm to the
result of that reduction (due to a presence of parallel edges, as explained be-
low), a simple modification along the lines of that reduction allows to deduce
Lokshtanov’s result for Optimal Linear Arrangement from our algorithm.

2 Basic Definitions

We use the standard terminology of graph theory. A special attention has to be
paid to simplicity of graphs – while (non-)simplicity is usually not an issue for
the crossing number (just subdivide parallel edges), it becomes important with
respect to the minimum vertex cover. Therefore, we will consider simple graphs
throughout the paper by default, and we will use the term multigraph otherwise.

A drawing of a graph G = (V,E) is a mapping of the vertices V to distinct
points in the plane, and of the edges E to simple curves connecting their respec-
tive end points but not containing any other vertex point. When convenient,
we will refer to the elements (vertices and edges) of the drawing as to the cor-
responding elements of G. A crossing is a common point of two distinct edge
curves, other than their common end point. It is well established that the search
for an optimal solution to the crossing number problem can be restricted to so
called good drawings : any pair of edges crosses at most once, adjacent edges do
not cross, and there is no crossing point in common of three or more edges.

Definition 2. The problem Crossing Number asks for a good drawing D of
a given graph G with the least possible number of crossings.

The number of crossings in a particular drawing D is denoted by cr(D) and
the minimum over all good drawings D of a graph G by cr(G). We call cr(D)
and cr(G) the crossing number of the drawing D and the graph G, respectively.

We will also need to deal with weighted crossing number. Consider a graph
H with a weight assignment w : E(H) → N. Then a crossing between edges
e, f ∈ E(H) naturally counts as w(e) ·w(f) crossings (as if they were bunches of
w(e) and w(f) parallel edges). The weighted crossing number cr(H) of weighted
H is defined as in Definition 2 while counting crossings this weighted way.

Following [20], we introduce the problem Integer Quadratic Program-

ming (IQP) in a generalized form.3 Its input consists of a k×k integer matrix Q,
an m× k and m′ × k integer matrices A and C, a k-dimensional integer vector
p, and m- and m′-dimensional integer vectors b and d. The task is to find an
optimal solution z◦ to the following optimization problem:

Minimize zTQz + pTz

subject to Az ≤ b (1)

Cz = d

z ∈ Z
k

3 The stated generalized form comes from page 4 of [20], formula (2) and below.



Note that “finding a solution” of an IQP instance means exactly one of the
following three outcomes: the instance is infeasible and we correctly detect that,
or the instance is feasible and unbounded and we again detect that, or the
instance is feasible and bounded and we output an optimal solution z◦.

Theorem 3 (Lokshtanov [20]). Consider the Integer Quadratic Pro-

gramming problem as above (1), where the input consists of the integer ma-
trices A, C, Q and the integer vectors b, d, p. Let L denote the length of the
combined bit-representation of this input, and let λ be the largest absolute value
of the entries in the matrices A, C and Q, and the entries in the vector p.
There exists an algorithm which finds a solution of this instance of IQP in time
f(k, λ) ·LO(1) for some computable function f (that is, fixed-parameter tractable
with input size L and parameters k and λ).

3 Clustered Optimal Drawings

We start with a high-level idea of our solution. Consider a simple graph G and a
vertex cover X ⊆ V (G) of fixed size k = |X |. Then V (G) \X is an independent
set and every vertex of V (G) \ X can be classified by its neighbourhood in X
(and this classification is unique up to automorphisms). At the first sight it thus
appears natural to form “uniform” clusters of the vertices with the same neigh-
bourhood (to be treated the same way, whatever this means), and so seemingly
“reduce” the input size to O(2k) and then solve it in FPT by brute force. This
is, unfortunately, not at all sufficient.4

As we will see, while solving the crossing number problem, it would be enough
to additionally classify the vertices of V (G) \X by the cyclic ordering of their
edges in the (yet to be found) optimal drawing of G. Furthermore, it will also
be useful to restrict the arguments to the aforementioned good drawings (pairs
of edges crosses at most once and adjacent pairs do not cross). In particular,
in a good drawing the edges incident to one common vertex always form an
uncrossed star. We give the following core definition (see also Figure 1):

Definition 4. Let G be a graph with a vertex cover X, and D be a good drawing
of G. Then two vertices x, y ∈ V (G) \X belong to the same topological cluster
in D (with implicit respect to X) if their neighbourhood in X is the same, and
the clockwise cyclic order of the neighbours of x within D is the same as the
clockwise cyclic order of the neighbours of y.
(Note that a vertex of X does not belong to any topological cluster in D.)

4 In the exemplary case of Optimal Linear Arrangement [20], one may easily see
the problem on the graph Kk,n, whose smaller part X of size k is the minimum
vertex cover and all vertices of the larger part form one cluster with the same neigh-
bourhood X. Yet, an optimal linear arrangement solution for Kk,n has to alternate
the vertices of X and those of the large part in the middle of the arrangement. Hence
in this particular case of OLA, one has to consider at least the relative position of
vertices with respect to X in addition to their neighbourhoods.



Fig. 1. An illustration of topological clusters with respect to the vertex cover formed
by the middle four black vertices: any two blue (square) vertices on the left belong to
the same topological cluster, and likewise for any two red (diamond) vertices. Any blue
and a red vertex belong to different topological clusters.

We aim to show that an optimal drawing of our graph G can be obtained in
such a form that the topological clusters of vertices and the incident edges are
“drawn closely together”. The same idea, only for the special case of the com-
plete bipartite graph G = Kk,n, has already been used by Christian, Richter and
Salazar [8] (their research goal, though, was different). Our paper can be consid-
ered a generalization of (a part of) [8]. To achieve our goal, we separate two kinds
of crossings and rigorously describe a topological clustering of a drawing of G.

Assume a good drawing D of G. Having two edges e, f ∈ E(G) such that
one end of e belongs to the same topological cluster in D as one end of f , we
say that a (possible) crossing of e and f is a cluster crossing. All other edge
crossings occurring in D are called non-cluster crossings (and they include all
crossings on edges with both ends in X). Here we denote by crn(D) the number
of non-cluster crossings (possibly weighted) in the drawing D.

In the following definition we, informally, select one weighted “representative”
of each topological cluster of a drawing D.

Definition 5. A drawing DX is called a topological clustering of the drawing
D (of a graph G) with respect to its vertex cover X if the following hold:

– DX is an induced subdrawing of D and V (DX) ⊇ X,
– every vertex of V (D) \ X belongs to the same topological cluster in D as

some vertex of V (DX) \X,
– no two vertices of V (DX)\X are in the same topological cluster in DX , and
– DX is equipped with a weight function c : V (DX) \ X → N such that, for

every t ∈ V (DX) \ X, the size of the topological cluster in D containing t
equals c(t).

Note that there can be many (topologically) different topological clusterings
DX of the same drawing D, depending on how the “representative” vertices
from V (DX) \X are chosen. See also Figure 2

In view of Definition 5, it will be useful to consider the crossing number of
the following independently weighted graphs. For a graph H , an independent set
Y ⊆ V (H), and a weight function c : Y → N, let the edge weights in H be as
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Fig. 2. An illustration: the graph on the left has a vertex cover X formed by the
three black vertices. There are three topological clusters wrt. X, depicted by the blue
(square), red (diamond) and yellow (triangle) vertices. On the right, we can see two
different topological clusterings of this graph, with the weights in the node circles.

follows: for e ∈ E(H) having one end x ∈ Y we set c′(e) := c(x), and for edges e
with both ends in V (H) \ Y we set c′(e) = 1. This defines the weighted crossing
number of H and, in particular for Y = V (DX) \ X , the weighted crossing
number cr(DX) of DX with respect to its weight function c.

We can now formulate and prove the core claim:

Lemma 6. For every good drawing D of a graph G with a vertex cover X, there
exists its topological clustering DX such that the number of non-cluster crossings
in D is at least cr(DX).

Proof. We start by setting D′ := D, and then we will inductively choose suitable
representatives of the topological clusters of D′ until we arrive at desired DX .

Let the cost of a vertex x of D′ be the sum of all non-cluster(!) crossings
carried by the edges of D′ incident to x. We pick any (nonempty) topological
cluster S ⊆ V (D′) \X and choose a vertex s0 ∈ S having the least cost among
those of S. If |S| > 1, we iterate the following over all s ∈ S \ {s0};

– remove s and its incident edges from the drawing D′,
– choose a new vertex s′ in a tiny neighbourhood of s0 in D′, and draw the

edges of s′ in a tiny strip along the edges of s0 while making only such
non-cluster crossings as those that exist on the edges of s0.

Since s0 and s have had the same neighbourhood, the new drawing D′′ as a
graph (with s′) is isomorphic to D′ and the vertices s0 and s′ still belong to the
same topological cluster. Moreover, since s0 has been chosen with the least cost,
we have crn(D′′) ≤ crn(D′). (New cluster crossings can be simply ignored.)

At the end of the previous procedure, we get a drawingD◦ (isomorphic toD′)
which has no more non-cluster crossings than D′, and all edges of the cluster S
are drawn “the same way closely together” in D◦. From this it follows that the
number of non-cluster crossings carried by the edges incident to the cluster S in
D◦ equals |S|-times this number on the edges incident to s0 in D′. We therefore
define D1 as the induced subdrawing of D′ obtained by deleting the vertices of



S \ {s0} and assigning the weight c(s0) = |S|. In the setting of independently
weighted graph underlying D1, we get crn(D1) = crn(D◦) ≤ crn(D′).

We finish the proof inductively. Let r be the number of topological clusters
of given D. For i = 1, 2, . . . , r−1, we now repeat the previous steps for D′ := Di,
obtaining a subdrawing Di+1 such that crn(Di+1) ≤ crn(Di). Finally, Dr is a
topological clustering of D with respect to X by Definition 4 and we conclude
cr(Dr) = crn(Dr) ≤ . . . ≤ crn(D1) ≤ crn(D). ⊓⊔

4 Counting the Crossings in Clusters and Between

In order to complement Lemma 6, we need to estimate also the number of
cluster crossings in a drawing D. This is actually quite easy using the fact that
two vertices in the same topological cluster have the same cyclic ordering of their
neighbours. We use the following simple claim (cf. Figure 3):

Lemma 7 ([8, Lemma 2.1]). Let x, y be the two vertices of degree m in K2,m

for m ≥ 3. Consider any good drawing D of K2,m such that the clockwise cyclic
order of the neighbours of x within D is the same as the clockwise cyclic order
of the neighbours of y. Then cr(D) ≥ ⌊m

2 ⌋ · ⌊
m−1
2 ⌋ := Z(m).

Corollary 8. Consider a good drawing D of a graph G with a vertex cover X,
and a topological cluster S ⊆ V (D) \X of size c = |S|. Let the degree of vertices
in S be m. Then the number of cluster crossings in D between the edges incident
with S is at least

(

c
2

)

· ⌊m
2 ⌋ · ⌊

m−1
2 ⌋ =

(

c
2

)

· Z(m).

Readers may notice that the formula
(

c
2

)

· ⌊m
2 ⌋ · ⌊m−1

2 ⌋ in the lemma is not
symmetric in c and m – it grows on one hand with c2/2 and on the other hand
with m2/4. This is correct since the setting is also not symmetric. The vertices
in S are required to have the same cyclic order of neighbours in D, but the
neighbours of S do not have this property.

Proof. Let Z(m) = ⌊m
2 ⌋ · ⌊

m−1
2 ⌋. For s ∈ S, denote by Rs ⊆ G the subgraph

(a star) induced by s and the incident edges of s in G.
There is nothing to prove (the bound equals 0) form ≤ 2 or c = 1. Otherwise,

for every pair s1, s2 ∈ S, s1 6= s2, we apply Lemma 7 to the subdrawing Ds1,s2

of D induced by Rs1 ∪ Rs2 , getting at least Z(m) crossings within Ds1,s2 . If
s3 ∈ S is different from s1 and s2, then the crossings in Ds1,s3 are all distinct
from the crossings in Ds1,s2 ; this is since E(Ds1,s2) ∩ E(Ds1,s3) = E(Rs1 ), but
the edges on Rs1 are all incident to s1 and so they cannot mutually cross in a
good drawing. Consequently, each of the

(

c
2

)

invocations of Lemma 7 contributes
a collection of at least Z(m) new crossings, providing the overall lower bound of
(

c
2

)

· Z(m) cluster crossings between the edges incident with S. ⊓⊔

The next step is to introduce an “abstract level” of a topological clustering.
Simply put, a drawing D is an abstract topological clustering of a graph G with
respect to its vertex cover X if D is a topological clustering of some drawing of
G, but without the weight function. More precisely:



...

Fig. 3. Left: an optimal drawing of K2,7 achieving the minimum number of Z(7) = 9
crossings among all drawings in which the two vertices of degree 7 have the same cyclic
order of their neighbours (as in Lemma 7).
Right: “stacking” the left subdrawings such that the total number of cluster crossings
here matches the lower bound given by Corollary 8.

Definition 9. A drawing CX is an abstract topological clustering of a graph G
with respect to its vertex cover X if the following hold:

– CX is a good drawing of an induced subgraph of G containing X,
– for every vertex w ∈ V (G) \ X there is a vertex in V (CX) \ X having the

same neighbourhood as w in G, and
– no two vertices of V (CX) \X are in the same topological cluster in CX .

We will further use the term of planarization of a drawing D, which is the
plane graph obtained from D by turning every crossing into a new degree-4 ver-
tex. Two drawings D1 and D2 of the same graph are combinatorially equivalent
if the same pairs of edges cross in D1 as in D2, moreover in the same order of
the crossings on each edge, and their planarizations are equivalent plane graphs
(i.e., with the same collection of faces).

Lemma 10. Consider a graph G with a vertex cover X of size k = |X |. Then
every abstract topological clustering of G has size at most singly exponential in k,
and the number of combinatorially non-equivalent abstract topological clusterings
of G is bounded from above by a doubly exponential function of k.

Proof. A topological cluster in a drawing of G is uniquely determined by one of
2k possible neighbourhood subsets in X , and one of up to (k − 1)! cyclic orders
of the neighbours. Hence an abstract topological clustering C of G has at most
k+2k(k− 1)! ≤ kO(k) vertices. Hence the number of edges and of pairs of edges
of C is bounded from above by kO(k), which also implies cr(C) ≤ kO(k). Hence
the planarization of C has at most kO(k) vertices, and there are altogether at

most 2k
O(k)

such possible nonequivalent planarizations of abstract topological
clusterings of G. ⊓⊔

A consequence of Lemma 10 is that we can, in FPT time, process all pos-
sible abstract topological clusterings of any graph G with a small vertex cover.
Therefore, from now on, we may just fix one abstract topological clustering CX



of G and discuss how to optimize the crossing number over all such drawings
of G whose topological clustering comes from CX . The latter problem will be
reduced to a bounded instance of IQP, similarly as the special case of complete
bipartite graphs has been handled in aforementioned [8].

4.1 IQP Formulation for Crossings

In regard of Definition 9 and the coming arguments, it will be useful to consider
the following “compressed” representation of a graph G with a small vertex
cover X . Let GX denote the subgraph of G induced by X , and consider the
function h : 2X → N0 such that, for any Y ⊆ X , h(Y ) is the number of vertices
of G outside of X whose neighbourhood in G is exactly Y . Clearly, GX and h
determine G up to an isomorphism (and the size of this description can be only
logarithmic compared to the size of G).

For given G and X , let us fix any abstract topological clustering CX of G
with respect to X . For Y ⊆ X , let S(Y ) be the set of vertices of V (CX) \ X
whose neighborhood in X is exactly Y . Note that h(Y ) is non-zero iff S(Y ) is
non-empty. Let Y1, . . . , Yl be an enumeration of all subsets of X which map to
a non-zero value under h; then

⋃ l

i=1 S(Yi) = V (CX) \X . For i ∈ {1, . . . , l}, let
g(i) = |S(Yi)| and let S(Yi) = {v(i,1), . . . , v(i,g(i))}.

For an illustration, in Figure 2 (on the right, but ignoring the weights since
we are considering an abstract clustering) we have got l = 2 (Y1 = X and Y2

are the two bottom vertices of X), and g(1) = 2 (blue and red clusters) and
g(2) = 1 (yellow cluster). Altogether, V (CX) \X has three vertices there.

Let I be an index set defined as I := {(i, j) | 1 ≤ i ≤ l, 1 ≤ j ≤ g(i)}.
Similarly as in [8], we define the following crossing vector p = (pα | α ∈ I) and
the crossing matrix Q = (qα,β | α, β ∈ I), such that the intended use of p is
to count the crossings between the edges of GX and the edges incident to each
topological cluster corresponding to a vertex of V (CX) \ X , and the intended
use of Q is to count the cluster crossings of each one of the topological clusters
(the diagonal entries) and the non-cluster crossings between pairs of the clusters
(the other entries):

– The crossing vector p : Let e1, . . . , er be an enumeration of the edges in GX .
For α ∈ I and i ∈ {1, . . . , r}, let piα be the number of edges incident to vα
that cross ei in CX . Then pα =

∑r
i=1 p

i
α.

– The crossing matrix Q : Let α, β ∈ I. If α 6= β, define qα,β as the number
of crossings in CX between the edges incident to vα and the edges incident

to vβ . If α = β = (i, j), then qα,α := Z(|Yi|) =
⌊ |Yi|

2

⌋

·
⌊ |Yi|−1

2

⌋

.

(Z(·) has been defined in Lemma 7 and Corollary 8.)
To recapitulate where we stand now; we have fixed an abstract topological

clustering CX of G, and in order to proceed to a drawing of G (underlied by CX),
we first need to assign suitable integer weights to the vertices of V (CX)\X . Our
goal is to minimize the total number of crossings in the constructed drawing
of G. However, we only have CX and some assigned weights on V (CX) \ X ,
which together define the topological clustering DX of a drawing of G. The



crossing number cr(DX) is, via Lemma 6, related to the number of non-cluster
crossings in a desired drawing of G (refer to the proof of Theorem 12 for a
precise formulation). But it is not sufficient to minimize cr(DX) since the cluster
crossings in a drawing of G also play important role.

To complete the picture with cluster crossings, we define (cf. Corollary 8)

cl(DX) :=
∑

t∈V (DX)\X

(

c(t)

2

)

·Z
(

d(t)
)

=
∑

t∈V (DX)\X

(

c(t)

2

)

·

⌊

d(t)

2

⌋

·

⌊

d(t)− 1

2

⌋

,

where c is the weight function of DX and d(t) denotes the degree of t (which is
the same in DX as in G). Again, we refer to the proof of Theorem 12 for further
treatment of the relation of cl(DX) to the cluster crossings in a drawing of G.

Lemma 11. Let CX be an abstract topological clustering of G with respect to a
vertex cover X, and denote by D(CX) the set of all topological clusterings of good
drawings of G whose unweighted topological clustering is CX . Let, furthermore,
Yi, g, I, p and Q be as above. Then the following IQP

Minimize f(z) = zTQz + 2 · pTz (2)

over all z =
(

z(1,1), . . . , z(1,g(1)), . . . , z(l,1), . . . , z(l,g(l))
)

subject to
g(i)
∑

j=1

z(i,j) = h(Yi) for i ∈ {1, . . . , l}

z(i,j) ≥ 0 for (i, j) ∈ I

z ∈ Z
|I|

computes the minimum value of 2 · (cr(D) + cl(D) − r) over all D ∈ D(CX),
where r = cr(CX |X) is the number of crossings in the subdrawing of CX induced
by the vertex set X.

Proof. First, note that for any D ∈ D(CX) we have cr(D|X) = r by definition.
For a particular weight assignment z, consider the corresponding topological
clustering D = D(CX , z) ∈ D(CX ). We write cr(D) = r + r1(D) + r2(D) where
r1(D) counts the (weighted) crossings in D which involve one edge with both
ends in X , and r2(D) counts the crossings of which neither edge has both ends
in X . From the definition of the crossing vector p we immediately have r1(D) =
pTz. From the definition of the crossing matrix Q and that of cl(·) we also
get r2(D) + cl(D) = 1

2 · zTQz. Altogether, 1
2f(z) = r1(D) + r2(D) + cl(D) =

cr(D) + cl(D) − r. ⊓⊔

We are now ready to prove the main result of this paper, which is as stated
below.

Theorem 12 (refinement of Theorem 1). Consider a simple graph G given
on the input as follows: there is a set X (a vertex cover of G), a simple graph
GX (which is the subgraph of G induced by X), and a function h : 2X → N0

such that, for Y ⊆ X, h(Y ) is the number of vertices of G outside of X whose



neighbourhood in G is exactly Y . The size of this input G equals the size of GX

plus the the length of the bit-representation of function h.
Then the problem to compute the crossing number of G and the corresponding

topological clustering of an optimal drawing of G is fixed-parameter tractable with
respect to the parameter k = |X |.

Note that, when the vertex cover size k = |X | is fixed, the size of the input G
described in Theorem 12 is logarithmic in the number of vertices of G. Although,
in a typical use case, in which we do not get the input graph G in a parsed
form as in Theorem 12, but rather as a list of vertices and edges, we can first
compute, again in FPT [10], a vertex cover X of size ≤ k and the corresponding
function h. Then, from the output topological clustering of an optimal drawing
of G, we can easily in polynomial time construct the corresponding drawing of G.
Hence Theorem 12 implies Theorem 1.

Proof. Consider an optimal drawing D0 of G, i.e., one for which cr(D0) = cr(G)
holds. Then D0 may be assumed a good drawing by folklore arguments. By
Lemma 6, there is a topological clusteringDX ofD0 such that crn(D0) ≥ cr(DX).
Recall that DX is equipped with the weight function c, and that cl(DX) =
∑

t∈V (DX )\X

(

c(t)
2

)

· Z
(

d(t)
)

where d(t) denote the degree of t. By Corollary 8,

the total number of cluster crossings in D0 is at least cl(DX).
Now, let CX be the abstract topological clustering underlying DX . Although

we do not (yet) know DX , we can “find” CX by a brute force enumeration of
all abstract topological clusterings of G, which is still in FPT by Lemma 10.
Precisely, for every possible CX (where “possible” is checked simply by brute
force with respect to the parameter k), we compose an IQP as above (2). Then,
using Theorem 3, we solve it to get an assignment z of weights to CX , leading to
a clusteringD′

X , such that the objective value cl(D′
X)+cr(D′

X) is minimized over
all D′

X ∈ D(CX) by Lemma 11. Let, furthermore, C◦
X be an abstract topological

clustering of G achieving the overall minimum value of the IQP solutions – this
leads to a clustering D◦

X with globally minimal cl(D◦
X) + cr(D◦

X) for given G.
Consequently, counting separately the cluster and non-cluster crossings inD0,

and then considering the minimality of D◦
X , we get

cr(D0) ≥ cl(DX) + crn(D0) ≥ cl(DX) + cr(DX) ≥ cl(D◦
X) + cr(D◦

X).

It is now enough to “lift” the clustering D◦
X into a corresponding drawing D1 of

G with cl(D◦
X) + cr(D◦

X) crossings, which follows straightforwardly in the same
way as in [8], see Figure 3. Hence cl(D◦

X) + cr(D◦
X) ≥ cr(G) = cr(D0), and so

cr(D1) = cr(D0) = cr(G).
It remains to address runtime of our procedure. In the IQP (2) we have |I|

bounded from above by the size of CX , which is at most singly exponential
in k by Lemma 10. The same asymptotic upper bound kO(k) from the proof
of Lemma 10 applies also to cr(CX), and this clearly bounds all the entries of
the matrix Q and the vector p. Let L be the length of the bit representation
of h (from the input representation of G); then the length of the combined bit
representation of the IQP (2) is at most f1(k)·L

O(1) for some computable (singly



exponential) function f1. Then from Theorem 3, (2) is solved by an algorithm
in FPT time f2(k) · L

O(1) for some computable function f2. This IQP step is
repeated, by brute force and independently of L, at most f3(k) times where f3
is a computable function (doubly exponential) coming from the bound on the
number of abstract clusterings in Lemma 10. ⊓⊔

5 Conclusions

In our work we have stressed simplicity of the considered graphs. A natural ques-
tion is about what happens if we consider multigraphs with a vertex cover of
size k. There is, unfortunately, no easy answer to this question since deep prob-
lems arise in two different places of our arguments. First, since the multiplicity
of an edge may be unbounded in k, the entries of the crossing vector p and
the crossing matrix Q would no longer be bounded in k. Second, when defining
topological clusters, it would no longer be enough to consider a bounded number
of neighbourhoods in X and a bounded number of cyclic orders, but also a po-
tentially unbounded number of different multiplicities of the edges in a cluster.
Each of these problems would completely ruin the runtime of our procedure.

Therefore, we leave the problem of computational complexity of the exact
crossing number of multigraphs parameterized by a vertex cover size as open,
for future research. On the other hand, in the special case of multigraphs with a
vertex cover of size k and edge multiplicities bounded by a computable function
of k, it is not difficult to extend our approach to obtain again an FPT algorithm
(which we skip here due to space restrictions).

At last, we would like to very briefly mention the problem of minimizing
the crossing number of a small perturbation of a given map of a graph, e.g. [13],
which shares some common ground with our arguments. Although the objectives
of the two problems are not easily comparable, we suggest that our approach
can provide an efficient solution of the latter problem on graphs of small vertex
cover.
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6. Chimani, M., Hliněný, P., Mutzel, P.: Vertex insertion approximates the crossing
number for apex graphs. European Journal of Combinatorics 33, 326–335 (2012)
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