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4-CONNECTED TRIANGULATIONS ON FEW LINES∗†

Stefan Felsner‡

Abstract. We show that every 4-connected plane triangulation with n vertices can be
drawn such that edges are represented by straight segments and the vertices lie on a set of
at most

√
2n lines each of them horizontal or vertical. The same holds for plane graphs on

n vertices without separating triangle.

The proof is based on a corresponding result for diagrams of planar lattices which
makes use of orthogonal chain and antichain families.

1 Introduction

Given a planar graph G we denote by π(G) the minimum number ` such that G has a
plane straight-line drawing in which the vertices can be covered by a collection of ` lines.
Clearly π(G) = 1 if and only if G is a forest of paths. The set of graphs with π(G) = 2,
however, is already surprisingly rich, it contains trees, outerplanar graphs and subgraphs of
grids [1, 9].

The parameter π(G) has received some attention in recent years, here is a list of
known results:

• It is NP-complete to decide whether π(G) = 2 (Biedl et al. [2]).

• For a stacked triangulation G, a.k.a. planar 3-tree or Apollonian network, let dG be
the stacking depth (e.g. K4 has stacking depth 1). On this class lower and upper
bounds on π(G) are dG + 1 and dG + 2 respectively, see Biedl et al. [2] and for the
lower bound also Eppstein [8, Thm. 16.13].

• Eppstein [9] constructed a planar, cubic, 3-connected, bipartite graph G` on O(`3)
vertices with π(G`) ≥ `.

Related parameters have been studied by Chaplick et al. [4, 5].

The main result of this paper is the following theorem.

Theorem 1 If G is a 4-connected plane triangulation on n vertices, then π(G) ≤
√

2n.
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The result is not far from optimal since, using a small number of additional vertices
and many additional edges, Eppstein’s graph G` can be transformed into a 4-connected
plane triangulation, i.e., in the class we have graphs with π(G) ∈ Ω(n1/3). Figure 1 shows
a section of such an extension of G`.

Figure 1: A section of Eppstein’s graph G` (left) and its extension to a 4-connected trian-
gulation (right), extra vertices are shown in blue and additional edges in cyan.

A plane graph on at least 5 vertices and without separating triangles can be extended
to a 4-connected triangulation by adding edges and at most one extra vertex, see [3]. Graphs
requiring the extra vertex are wheels with an outer cycle of length at least 4 and subgraphs
of wheels obtained by removing some cycle edges. These exceptional graphs can be drawn
on 3 lines. Plane graphs with at most 4 vertices can be drawn on 2 lines. Therfore, we get:

Corollary 1 If G is a plane graph on n vertices without separating triangles, then
π(G) ≤

√
2n.

The proof of Theorem 1 makes use of transversal structures, these are special col-
orings of the edges of a 4-connected inner triangulation of a 4-gon with colors red and
blue.

In Section 2.1 we survey transversal structures. The red subgraph of a transversal
structure can be interpreted as the diagram of a planar lattice. Background on posets and
lattices is given in Section 2.2. Dimension of posets and the connection with planarity are
covered in Section 2.3. In Section 2.4 we survey orthogonal partitions of posets. The theory
implies that every poset on n elements can be covered by at most

√
2n − 1 subsets such

that each of the subsets is a chain or an antichain.

In Section 3 we prove that the diagram of a planar lattice on n elements has a
straight-line drawing with vertices placed on a set of

√
2n − 1 lines. All the lines used for

the construction are either horizontal or vertical.

Finally in Section 4 we prove the main result: transversal structures can be drawn
on at most

√
2n − 1 lines. In fact, the red subgraph of the transversal structure has such

a drawing by the result of the previous section. It is rather easy to add the blue edges to
this drawing and thus prove Theorem 1.

http://jocg.org/
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2 Preliminaries

2.1 Transversal structures

Let G be an internally 4-connected inner triangulation of a 4-gon, in other words G is a
plane graph with quadrangular outer face, triangular inner faces, and no separating triangle.
Let s, a, t, b be the outer vertices of G in clockwise order. A transversal structure for G is
an orientation and 2-coloring of the inner edges of G such that

(1) All edges incident to s, a, t and b are red outgoing, blue outgoing, red incoming, and
blue incoming, respectively.

(2) The edges incident to an inner vertex v come in clockwise order in four non-empty
blocks consisting solely of red outgoing, blue outgoing, red incoming, blue incoming
edges, respectively.

Figure 2 illustrates the properties and shows an example. Transversal structures have
several applications in graph drawing [18], [13], [14]. In particular it has been shown that
every internally 4-connected inner triangulation of a 4-gon admits a transversal structure.
Fusy [14] used transversal structures to prove the existence of straight-line drawings with
vertices being placed on integer points (x, y) with 0 ≤ x ≤ W , 0 ≤ y ≤ H, and H + W ≤
n− 1.

b

b

t

a

a

t

s

s

Figure 2: The two local conditions and an example of a transversal structure.

An orientation of a graph G is said to be acyclic if it has no directed cycle. Given an
acyclic orientation of G, a vertex having no incoming edge is called a source, and a vertex
having no outgoing edge is called a sink. A bipolar orientation is an acyclic orientation with
a unique source s and a unique sink t, cf. [6]. Bipolar orientations of plane graphs are also
required to have s and t incident to the outer face. A bipolar orientation of a plane graph
has the property that at each vertex v the outgoing edges form a contiguous block and
the incoming edges form a contiguous block. Moreover, each face f of G has two special
vertices sf and tf such that the boundary of f consists of two non-empty oriented paths
from sf to tf .

Let G = (V,E) be an internally 4-connected inner triangulation of a 4-gon with outer
vertices s, a, t, b in clockwise order, and let ER and EB respectively be the red and blue ori-
ented edges of a transversal structure on G. We define E+

R = ER∪{(s, a), (s, b), (a, t), (b, t)}

http://jocg.org/
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and E+
B = EB ∪ {(a, s), (a, t), (s, b), (t, b)}, i.e., we think of the outer edges as having both,

a red direction and a blue direction. The following has been shown by Kant and He [18]
and Fusy [13].

Proposition 1 The red graph GR = (V,E+
R ) and the blue graph GB = (V,E+

B ) both come
with a bipolar orientation inherited from the transversal structure. GR has source s and
sink t, and GB has source a and sink b.

The following two properties are easy consequences of the previous discussion.

(R) The red and the blue graph are both transitively reduced, i.e., if (v, v′) is an edge,
then there is no directed path v, u1, . . . , uk, v

′ with k ≥ 1.

(F) For every blue edge e ∈ EB there is a face f in the red graph such that e has one
endpoint on each of the two oriented sf to tf paths on the boundary of f .

2.2 Posets

We assume basic familiarity with concepts and terminology for posets, referring the reader
to the Trotter’s monograph [21] and survey [22] for additional background material. In this
paper we consider a poset P = (X,<) as being equipped with a strict partial order.

A cover relation of P is a pair (x, y) with x < y such that there is no z with
x < z < y, we write x ≺ y to denote a cover relation of the two elements. A diagram (a.k.a.
Hasse diagram) of a poset is an upward drawing of its transitive reduction. That is, X is
represented by a set of points in the plane and a cover relation x ≺ y is represented by a
y-monotone curve going upwards from x to y. In general these curves (edges) may cross
each other but must not touch any vertices other than their endpoints. A diagram uniquely
describes a poset, therefore, we usually show diagrams in our figures. A poset is said to be
planar if it has a planar diagram.

It is well known that in discussions of graph planarity, we can restrict our attention
to straight-line drawings. In fact Schnyder [20] proved that a plane graph on n vertices
admits a plane straight-line drawing with vertices on an (n− 2)× (n− 2) grid. Discussions
of planarity for posets can also be restricted to straight-line drawings; however, this may
come at some cost in visual clarity. Di Battista et al. [7] have shown that an exponentially
large grid may be required for upward planar drawings of directed acyclic planar graphs
with straight lines. In the next subsection we will see that for certain planar posets the
situation is more favorable.

2.3 Dimension of planar posets

Let P = (X,<P ) be a poset. A linear extension of P is a total order L = (X,<L) ex-
tending P , i.e., if x <P y, then x <L y. A realizer of P is a collection L1, L2, . . . , Lt of
linear extensions of P such that P = L1 ∩ L2 ∩ · · · ∩ Lt. The dimension of P = (X,<),
denoted dim(P ), is the least positive integer t such that P has a realizer of size t. Obvi-
ously, a poset P has dimension 1 if and only if it is a chain (total order). Also, there is an
elementary characterization of posets of dimension at most 2 that we shall use.

http://jocg.org/
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Proposition 2 A poset P = (X,<) has dimension as most 2 if and only if its incomparability
graph is also a comparability graph.

There are a number of results concerning the dimension of posets with planar order
diagrams. Recall that an element is called a zero of a poset P when it is the unique minimal
element. Dually, a one is a unique maximal element. A finite poset which is also a lattice,
i.e., which has well defined meet and join operations, always has both a zero and a one.
Figure 3 shows some posets and lattices.

The following result may be considered part of the folklore of the subject.

Theorem 2 Let P be a finite lattice. Then P is planar if and only if it has dimension at
most 2.

Figure 3: Three posets with their diagrams: (left) a planar poset of dimension 3, (middle)
a non-planar lattice, and (right) a planar lattice.

The complete proof of the theorem can be found in Trotter’s book [21]. For the
proof of the reverse direction let P be a lattice of dimension at most 2. Let L1 and L2 be
linear orders on X so that P = L1 ∩ L2. For each x ∈ X, and each i = 1, 2, let xi denote
the height of x in Li. Then a planar diagram of P is obtained by locating each x ∈ X at
the point in the plane with integer coordinates (x1, x2) and joining points x and y with a
straight line segment when one of x and y covers the other in P . Figure 4 shows an example.
A pair of crossing edges in this drawing would violate the lattice property, indeed if x ≺ y
and x′ ≺ y′ are two covers whose edges cross, then x ≤ y′ and x′ ≤ y whence there is no
unique least upper bound for x and x′.

A planar digraph D with a unique sink and source, both of them on the outer face,
and no transitive edges is the digraph of a planar lattice. Hence, the above discussion
directly implies the following classical result.

Proposition 3 A planar digraph D on n vertices with a unique sink and source on the outer
face and no transitive edges has an upward drawing on an (n− 1)× (n− 1) grid.

To the best of our knowledge the area problem for diagrams of general planar posets
is open.

In this paper we will, henceforth, use the terms 2-dimensional poset and planar lat-
tice respectively to refer to a poset P = (X,<) together with a fixed ordered realizer [L1, L2].
As shown in the proof of Theorem 2, fixing the realizer of a 2-dimensional lattice can be

http://jocg.org/
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Figure 4: The planar lattice from Fig. 3 with a realizer L1, L2.

interpreted as fixing a plane drawing of the diagram. By fixing the realizer of P we also have
a well-defined primary conjugate, this is the poset Q on X with realizer [L1, L2], where L2

is the reverse of L2. Define the left of relation on X such that x is left of y if and only
if x = y or x || y, i.e., x and y are incomparable in P , and x < y in Q. In the drawing of P
obtained from [L1, L2] element x is left of y if x is in the upper-left quadrant of y.

2.4 Orthogonal partitions of posets

Let P = (X,<) be a finite poset. Dilworth’s theorem states that the maximum size of an
antichain equals the minimum number of chains partitioning the elements of P .

Greene and Kleitman [17] found a nice generalization of Dilworth’s result. A k-
antichain is defined as a family of k pairwise disjoint antichains.

Theorem 3 For any partially ordered set P and any positive integer k

max
∑
A∈A
|A| = min

∑
C∈C

min(|C|, k)

where the maximum is taken over all k-antichains A and the minimum over all chain
partitions C of P .

Greene [16] stated the dual of this theorem. Let a `-chain be a family of ` pairwise
disjoint chains.

Theorem 4 For any partially ordered set P and any positive integer `

max
∑
C∈C
|C| = min

∑
A∈A

min(|A|, `)

where the maximum is taken over all `-chains C and the minimum over all antichain par-
titions A of P .
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A further theorem of Greene [16] can be interpreted as a generalization of the
Robinson-Schensted correspondence and its interpretation given by Greene [15].

To a partially ordered set P with n elements there is an associated integer partition λ
of n, such that for the Ferrer’s diagram G(P ) corresponding to λ we get:

Theorem 5 The number of squares in the ` longest columns of G(P ) equals the maximal
number of elements covered by an `-chain of P and the number of squares in the k longest
rows of G(P ) equals the maximal number of elements covered by a k-antichain of P .

Figure 5 shows an example, in this case the Ferrer’s diagram G(P ) corresponds to
the partition 6+3+3+1+1 |= 14. Several proofs of Greene’s results are known [10], [12], [19].
For a not so recent, but at its time comprehensive survey we recommend West [23].

The approach taken by András Frank [12] is particularly elegant. Following Frank
we call a chain family C and an antichain family A of a poset P = (X,<) an orthogonal
pair iff

1. X =
( ⋃
A∈A

A
)
∪
(⋃
C∈C

C
)

, and

2. |A ∩ C| = 1 for all A ∈ A, C ∈ C.

If C is orthogonal to a k-antichain A and C+ is obtained from C by adding the rest of P as
singletons, then ∑

A∈A
|A| =

∑
C∈C+

∑
A∈A
|A ∩ C| =

∑
C∈C+

min(|C|, k).

Thus C+ is a k optimal chain partition in the sense of Theorem 3. Similarly an ` optimal
antichain partition in the sense of Theorem 4 can be obtained from an orthogonal pair A, C
where C is an `-chain.

Using the minimum cost flow algorithm of Ford and Fulkerson [11], Frank proved
the existence of a sequence of orthogonal chain and antichain families. This sequence is rich
enough to allow the derivation of the whole theory. The sequence consists of an orthogonal
pair for every point from the boundary of G(P ). With the point (`, k) from the boundary
of G(P ) we get an orthogonal pair A, C such that A is a k-antichain and C an `-chain, see
Figure 5. Since G(P ) is the Ferrer’s diagram of a partition of n we can find a point (`, k)
on the boundary of G(P ) with `+ k ≤

√
2n− 1 (This is because every Ferrer’s shape of a

partition of m which contains no point (x, y) with x+ y ≤ s on the boundary contains the
shape of the partition (1, 2, . . . , s+ 1). From m ≥

(
s+2
2

)
we get s+ 1 <

√
2m).

We will use the following corollary of the theory:

Corollary 2 Let P = (X,<) be a partial order on n elements, then there is an orthogonal
pair A, C where A is a k-antichain and C an `-chain and k + ` ≤

√
2n− 1.

For our application we will need some additional structure on the antichains and
chains of an orthogonal pair A, C.

The canonical antichain partition of a poset P = (X,<) is constructed by recursively
removing all minimal elements from P and make them one of the antichains of the partition.

http://jocg.org/
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Figure 5: The Ferrer’s shape of the lattice L from Fig. 4 together with two orthogonal pairs
of L corresponding to the boundary points (3, 3) and (5, 1) respectively of G(L); chains of C
are blue, antichains of A are red, green, and yellow.

More explicitely A1 = Min(X) and Aj = Min
(
X \

⋃
{Ai : 1 ≤ i < j}

)
for j > 1. Note

that by definition for each element y ∈ Aj with j > 1 there is some x ∈ Aj−1 with x < y.
Due to this property there is a chain of h elements in P if the canonical antichain partition
consists of h non-empty antichains. This in essence is the dual of Dilworth’s theorem,
i.e., the statement: the maximal size of a chain equals the minimal number of antichains
partitioning the elements of P .

Lemma 1 Let A, C be an orthogonal pair of P = (X,<) and let PA be the order induced
by P on the set XA =

⋃
{A : A ∈ A}. If A′ is the canonical antichain partition of PA,

then |A| = |A′| and A′, C is again an orthogonal pair of P .

Proof. Let A be the family A1, . . . , Ak. Starting with this family we will change the an-
tichains in the family while maintaining the invariant that the family of antichains together
with C forms an orthogonal pair. At the end of the process the family of antichains will be
the canonical antichain partition of PA.

The first phase of changes is the uncrossing phase. We iteratively choose two an-
tichains Ai, Aj with i < j from the present family and let Bi = {y ∈ Ai : there is an x ∈
Aj with x < y} and Bj = {x ∈ Aj : there is a y ∈ Ai with x < y}. Define A′i = Ai−Bi+Bj

and A′j = Aj −Bj +Bi. It is easy to see that A′i and A′j are antichains and that the family
obtained by replacing Ai, Aj by A′i, A

′
j is orthogonal to C. This results in a family of k

antichains such that if i < j and x ∈ Ai and y ∈ Aj are comparable, then x < y.

The second phase is the push-down phase. In this phase we go through i ∈ [k − 1]
and let B = {y ∈ Ai+1 : there is no x ∈ Ai with x < y}. We then define A′i+1 = Ai+1 −B
and A′i = Ai + B. It is again easy to see that A′i and A′i+1 are antichains and that the
family obtained by replacing Ai, Ai+1 by A′i, A

′
i+1 is orthogonal to C. This results in a

family of k antichains such that if y ∈ Ai+1, then there is an x ∈ Ai with x < y. This
implies that Aj = Min(XA \

⋃
{Ai : 1 ≤ i < j}), hence the family is the canonical antichain

partition.

Let P = (X,<) be a 2-dimensional poset with realizer [L1, L2] and recall that the
primary conjugate has realizer [L1, L2]. The order Q corresponds to a transitive relation on
the complement of the comparability graph of P , in particular chains of P and antichains
of Q are in bijection.

http://jocg.org/
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The canonical antichain partition of Q yields the canonical chain partition of P .
The canonical chain partition C1, . . . , Cw of P can be characterized by the property that
for each 1 ≤ i < j ≤ w and each element y ∈ Cj there is some x ∈ Ci with x || y and in L1

element x comes before y. In particular C1 is a maximal chain of P .

Let A, C be an orthogonal pair of the 2-dimensional P = (X,<). Applying the proof
of Lemma 1 to the orthogonal pair C,A of Q we obtain:

Lemma 2 Let A, C be an orthogonal pair of P = (X,<) and let PC be the order induced
by P on the set XC =

⋃
{C : C ∈ C}. If C′ is the canonical chain partition of PC, then

|C| = |C′| and C′,A is again an orthogonal pair of P .

In a context where edges of the diagram are of interest, it is convenient to work
with maximal chains. The canonical chain partition C1, . . . , Cw of a 2-dimensional P in-
duces a canonical chain cover of P which consists of maximal chains. With chain Ci as-
sociate a chain C+

i which is obtained by successively adding to Ci all compatible elements
of Ci−1, Ci−2, . . . in this order. Alternatively C+

i can be described by looking at the con-
jugate Qd of P with realizer [L1, L2] (this is the dual of the primary conjugate Q), and
defining C+

i as the first chain in the canonical chain partition of the order induced by⋃
{Cj : 1 ≤ j ≤ i}), the chain C+

i corresponds to the antichain of minimal elements of
the order induced by Qd on

⋃
{Cj : 1 ≤ j ≤ i}). The maximality of C+

i follows from the
characterization of the canonical chain partition given above.

3 Drawing Planar Lattices on Few Lines

In this section we prove that planar lattices with n elements have a straight-line diagram
with all vertices on a set of

√
2n−1 horizontal and vertical lines. The following proposition

covers the case where the lattice has an antichain partition of small size. We assume that a
planar lattice is given with a realizer [L1, L2] and, hence, with a fixed plane drawing of its
diagram.

Proposition 4 For every planar lattice L = (X,<) with a plane diagram DL and any order
preserving map h : X → IR there is a plane straight-line drawing Γ of DL such that each
element x ∈ X is represented by a point with y-coordinate h(x). Additionally all elements
of the left boundary chain of DL are aligned vertically in the drawing.

Proof. Let C1, . . . , Cw be the canonical chain partition and C+
1 , . . . , C

+
w be the corresponding

canonical chain cover. Define Si as the suborder of L induced by
⋃
{Cj : 1 ≤ j ≤ i} and

note that Si is a sublattice of L with left boundary chain C1 = C+
1 and right boundary

chain C+
i .

Embed the elements of C1 on a vertical line g1 (e.g. the line y = 0) with points as
prescribed by h. This is a drawing Γ1 of S1. Suppose that a drawing Γi of the diagram Si is
constructed. The right boundary path γi of Γi is a polygonal y-monotone path. Embed the
elements of Ci+1 on a vertical line gi+1 with points as prescribed by h. We need a position
for gi+1 to the right of γi such that all the diagram edges connecting Ci+1 to C+

i can be
inserted to obtain a crossing free drawing Γi+1 of the diagram of Si+1.
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Let Ei be the set of diagram edges connecting Ci+1 to C+
i . For each e ∈ Ei there

are points p ∈ γi and q ∈ gi+1 representing the endpoints. Let Kp be an open cone with
apex p which intersects γi only at p and contains a horizontal ray to the right. Let be be
the minimal horizontal distance of γi and gi+1 such that q ∈ Kp. Let β = max(be : e ∈ Ei).
If we place γi and gi+1 at horizontal distance β, then the edges of Ei can be drawn such
that they do not interfere (introduce crossings) with γi. We claim that there is no crossing
of edges of Ei. Let e = (p, q) and e′ = (p′, q′) be two drawn edges from Ei. Since they are
edges of a planar diagram, they are cover edges and have endpoints on two chains. We can
assume that h(p) < h(p′) which implies h(q) < h(q′). If the two edges cross, their crossing
point is in Kp∩Kp′ . Let c be the leftmost point of Kp∩Kp′ (here we take the closed cones).
Note that h(p) < h(c) < h(p′). This implies that at the x-coordinate of c edge e′ is above
e. At the crossing they change their vertical order, whence, to the right of the crossing e is
above e′. This implies that h(q) > h(q′), a contradiction. Hence we have a planar drawing
Γi+1 of the diagram of Si+1. With induction we obtain the drawing Γ = Γw of DL.

A particularly interesting order preserving map h : X → IR is the height function.
The height h(x) of an element x of P can be defined via the canonical antichain partition
(A1, . . . , Ak) of L, namely h(x) = i if and only if x ∈ Ai. Proposition 4 shows that π(L) is
upper bounded by the height of L, i.e., by the maximum height of an element of L.

Theorem 6 For every planar lattice L = (X,<) with |X| = n, there is a plane straight-
line drawing of the diagram such that the elements are represented by points on a set of at
most

√
2n− 1 lines. Additionally

• each of the lines is either horizontal or vertical,

• each crossing point of a horizontal and a vertical line hosts an element of X.

Proof. Let A, C be an orthogonal pair of L such that A is a k-antichain, C an `-chain, and
k + ` ≤

√
2n− 1. It follows from Corollary 2 that such a pair exists.

Since L has a fixed ordered realizer [L1, L2], we can apply Lemma 1 to A and
Lemma 2 to C to get an orthogonal pair (A1, . . . , Ak), (C1, . . . , C`) where the antichain
family and the chain family are both canonical. Fix an order preserving map h : X → IR
with the property that h(x) = i for all x ∈ Ai. Such a map exists because the antichain
family is canonical, i.e., i < j and x ∈ Ai, y ∈ Aj implies x 6< y.

In the following we will construct a drawing Γ of the diagram DL of L such that
each element x ∈ X is represented by a point with y-coordinate h(x), and in addition all
elements of the chain Ci lie on a common vertical line gi for 1 ≤ i ≤ `. By Property 1 of
orthogonal pairs, for each x ∈ X there is an i such that x ∈ Ai or a j such that x ∈ Cj or
both. Therfore, Γ will be a drawing such that the k horizontal lines y = i with i = 1, . . . , k
together with the ` vertical lines gj with j = 1, . . . , ` cover all the elements of X. Property 2
of orthogonal pairs implies the second extra property mentioned in the theorem.

If the number ` of chains is zero, then k equals the height of L and we get a drawing Γ
with all the necessary properties from Proposition 4. Now let ` > 0.

The chain family C1, . . . , C` is the canonical chain partition of the order induced on
the set XC =

⋃
{Ci : i = 1 . . . `}. Let C+

1 , . . . , C
+
` be the corresponding canonical chain
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covering of XC .

Let Xi for 1 ≤ i ≤ ` be the set of all elements which are left of some element of C+
i

in L, and let X`+1 = X. Since C+
i is a maximal chain it corresponds to a path from the

zero element to to the one element in the diagram of the lattice, elements to the left of this
path are in Xi which is defined via the more abstract ’left of’ relation. Define Si as the
suborder of L induced by Xi. Also let Yi = Xi+1−Xi +C+

i and let Ti be the suborder of L
induced by Yi. Note the following properties of these sets and orders:

• Xi ∩ Cj = ∅ for 1 ≤ i < j ≤ `.
• Each Si is a planar sublattice of L, its right boundary chain is C+

i .

• Ti is a planar sublattice of L, its left and right boundary chains are C+
i and C+

i+1,
respectively.

A drawing Γ1 of S1 with the right boundary chain being aligned vertically is obtained by
applying Proposition 4 a reflection with a vertical axis to the diagram DL[X1] and reflecting
the resulting drawing again with a vertical axis.

We construct the drawing Γ of DL in phases. In phase i we aim for a drawing Γi+1

of Si+1 extending the given drawing Γi of Si, i.e., we need to construct a drawing Λi of Ti
such that

(1) The left boundary chain of Λi matches the right boundary chain of Γi.

(2) In Λi all elements of Ci+1 are on a common vertical line gi+1.

The construction of Λi is done in three stages. First we extend C+
i to the right by adding

‘ears’. Then we extend C+
i+1 to the left by adding ‘ears’. Finally we show that the left and

the right part obtained from the first two stages can be combined to yield the drawing Λi.

To avoid extensive use of indices let Y = Yi, T = Ti, C
+ = C+

i , and let γ be
a copy of the y-monotone polygonal right boundary of Γi, i.e., γ is a drawing of C. We
initialize Λ′ = γ.

A left ear of T is a face F in the diagram DL[Y ] of T such that the left boundary
of F is a subchain of the left boundary chain C+ of DL[Y ]. The ear is feasible if the right
boundary chain contains no element of Ci+1. Given a feasible ear we use the method from
the proof of Proposition 4 to add F to γ. We represent the right boundary z0 < z1 < . . . < zl
excluding z0 and zl of F on a vertical line g by points q1, . . . , ql−1 with y-coordinates as
prescribed by h. The points q0 and ql representing z0 and zl respectively are already
represented on γ. Then we place g at some distance β to the right of γ. The value of β
has to be chosen large enough to ensure that edges (q0, q1) and (ql−1, ql) are drawn such
that they do not interfere with γ. Let Λ′ be the drawing augmented by the polygonal path
q0, q1, . . . , ql−1, ql and let C+ again refer to the right boundary chain γ of Λ′. Delete all
elements of the left boundary of F except z0 and zl from Y and T . This shelling of a left
ear from T is iterated until there remains no left feasible ear. Upon stopping we have a
drawing Λ′ which can be glued to the right side of Γi. Let γ′ be the right boundary chain
of Λ′.

Now let C = Ci+1. Initialize a new drawing Λ′′ by placing the elements of C on
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a vertical line g at the heights prescribed by h and connect consecutive ones by an edge
whenever the order relation is indeed a cover relation of L. The initial drawing may thus
be disconnected and if so this will remain the case throughout this stage. We now consider
right ears from T . A right ear of T corresponding to a face F is feasible if the left boundary
chain of F contains no element of γ′. The left boundary chain of a feasible ear can be drawn
as a y-monotone polygonal chain left of the left boundary γ′′ of Λ′′. Update γ′′ to be the
new left boundary of the augmented Λ′′ and remove the elements of the ear from Y and T .
The shelling of right ears from T is iterated until there remains no feasible right ear. Note
that γ′′ is y-monotone but it may consist of several components.

In the final stage we have to combine the drawings Λ′, Λ′′ into a single drawing.
This is done by drawing the edges and chains which remain in T between the two boundary
chains as straight segments between γ′ and γ′′. This will be possible because we can shift γ′

and γ′′ as far apart horizontally as necessary. Figure 6 gives an example.

Figure 6: After having added ears (light blue) to the chains Ci and Ci+1 (dark blue) the
connecting edges and components are put between them (pink).

First we draw all the edges connecting the two chains. Let E be the set of edges
connecting the left and right boundary chains of T . For each e ∈ E the endpoints are
represented by points p ∈ γ′ and q ∈ γ′′. Let Kp be an open cone with apex p which
intersects γ′ only at p and contains a horizontal ray to the right and let Kq be an open
cone with apex q which intersects γ′′ only at q and contains a horizontal ray to the left.
Let be be the minimal horizontal distance of γ′ and γ′′ such that p ∈ Kq and q ∈ Kp. Let
β = max(be : e ∈ E). If we place γ′ and γ′′ at horizontal distance β, then the edges of E can
be drawn such that they do not interfere (introduce crossings) with γ′ and γ′′. We claim
that there is no crossing of edges of E. Let e = (p, q) and e′ = (p′, q′) be two drawn edges
from Ei. Since they are edges of a planar diagram, they are cover edges and have endpoints
on two chains. We can assume that h(p) < h(p′) which implies h(q) < h(q′). If the two
edges cross, their crossing point is in Kp ∩Kp′ . Let c be the leftmost point of Kp ∩Kp′ and
note that h(p) < h(c) < h(p′). This implies that at the x-coordinate of c edge e′ is above e.
The crossing point is also contained in Kq ∩Kq′ . Let b be the rightmost point of Kq ∩Kq′

and note that h(q) < h(b) < h(q′). This implies that at the x-coordinate of b edge e′ is
above e. It follows that edge e′ is above e in the vertical strip defined by a and b, whence,
e and e′ are not crossing.

Placing Λ′ and Λ′′ such that β is the distance between their outer chains and drawing
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the edges of E yields a drawing Λ of a lattice. An important feature of the drawing is that
if we move the two subdrawings Λ′ and Λ′′ further apart the drawing keeps the needed
properties, i.e., the height of elements remains unaltered, vertices of a chain which should
be vertically aligned remain vertically aligned, and the drawing is crossing-free.

Now assume that T contains elements which are not represented in Λ. Let B be a
connected component of such elements where connectivity is with respect to DL. All the
elements of B have to be placed in a face FB of Λ. Let δ′ and δ′′ be the left and right
boundary path of FB.

In the following we repeatedly select a component B and a chain C from B which is
to be drawn in the corresponding face FB of Λ such that the minimum and the maximum
of C have connecting edges to the two sides of the boundary of FB. Let us consider the case
that in DL the maximum of C has an outgoing edge to an element which is represented by
a point p ∈ δ′ and the minimum of C has an incoming edge from an element represented
by q ∈ δ′′. We represent the elements of C as points on the prescribed heights on a line
segment ζ with endpoints p and q. It may become necessary to stretch the face horizontally
to be able to place C. In this case we stretch the whole drawing between γ′ and γ′′ with a
uniform stretch factor. There may be additional edges between elements of C and elements
on δ′ and δ′′. They can also be drawn without crossing when the distance of δ′ and δ′′

exceeds some value b.

Stretching the whole drawing between γ′ and γ′′ allows us to draw the segment ζ
and additional edges inside of FB because of the following invariant.

• For each face F of the drawing Λ and two points x and y from the boundary of F
it holds that: if the segment x, y is not in the interior of F , then the parts of the
boundary obstructing the segment x, y belong to γ′ or γ′′.

When including a chain C in the drawing Λ, we place the elements of C at the prescribed
heights on a common line segment ζ. This ensures that each new element contributes convex
corners in all incident faces. Hence, new elements can not obstruct a visibility within a face.
Therefore, obstructing corners correspond to elements of γ′ or γ′′ and the invariant holds.

The case where the left side of F connects to the minimum and the right side to
the maximum of C is symmetric to the previous. Now consider the case where maximum
and minimum of the chain C connect to two elements p and q on the same side of F .
Since γ′ and γ′′ do not admit ear extensions we know that not both of p and q belong to
one of γ′ and γ′′. If the segment from p to q is obstructed, then the invariant ensures that
with sufficient horizontal stretch the segment ζ connecting p and q will be inside F . Hence,
chain C can be drawn and Λ can be extended.

When there remains no component B containing a chain C which can be included
in the drawing using the above strategy, then either all elements of Y are drawn or we have
the following: every component B only connects to elements of a line segment ζB.

In this situation B is kind of a big ear over ζB. We next describe how to draw B,
but note, that doing this we will not maintain or need the invariant.

By construction all elements of ζB belong to a common chain CB. Consider the
union B + CB and note that this is a planar lattice LB, moreover, CB is either the left
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or the right boundary chain of LB. Assume that CB is the left boundary chain of LB,
the other case is symmetric. Now use Proposition 4 to get a drawing ΛB of LB with CB

aligned vertically. Using an affine transformation we can map ΛB into Λ such that the line
containing CB in ΛB is mapped to the line supporting the segment ζB. Since the elements
of CB are at their prescribed heights, their representing points in ΛB are mapped to the
representing points of Λ. The affine map also has to compress ΛB horizontally so that it is
placed in a narrow strip on the right side of ζB. This strip can be chosen narrow enough to
make sure that all of B is mapped to the face of Λ where it belongs.

The constructed drawing Λ is a drawing Λi of Ti. Glueing Λi to Γi yields a draw-
ing Γi+1 of Si+1. Eventually the drawing Γ` will be constructed. From there the draw-
ing Γ = Γ`+1 is obtained by adding some left ears.

4 Transversal Structures on Few Lines

Theorem 7 For every internally 4-connected inner triangulation of a 4-gon G = (V,E) with
n vertices there is a planar straight line drawing such that the vertices are represented by
points on a set of at most

√
2n− 1 lines. Additionally

• each of the lines is either horizontal or vertical,

• each crossing point of a horizontal and a vertical line hosts a vertex.

Proof. Fix a transversal structure of G and consider the red graph GR = (V,E+
R ). From

Proposition 1 and (R) we know that GR is bipolar and transitively reduced. This implies
that there is a planar lattice L = (V,<) such that a diagram of L is an upward drawing
of GR. The relation < is defined as v < v′ if and only if there is a directed path from v to
v′ in GR.

We would like to use Theorem 6 to draw GR on
√

2n− 1 lines and then include the
blue edges of the transversal structure in the drawing. This, however, may yield crossings.
The good news is that by property (F) every blue edge connects the left and right side of
a red face. This suggests that when, in the construction given in the proof of Theorem 6 a
red face is closed, we can look at the blue edges and adapt the distance between the sides
of the face to include the blue edges crossing free in the drawing.

To see that this is indeed possible we have to go through the cases of the proof.
When adding a left feasible ear, i.e., when adding the right boundary of a face F , we draw
all the blue edges corresponding to the face F . If there is an edge e from p ∈ γ to q ∈ g
define be as the minimal horizontal distance of γ and g such that q ∈ Kp. When placing g
at a distance β from γ which exceeds all the values be, the blue edges can be drawn crossing
free. When adding a right feasible ear the situation is symmetric.

Now let us consider the stage where a left and right drawing Λ′ and Λ′′ with boundary
chains γ′ and γ′′ have to be combined. When drawing edges connecting the two chains we
include all red and all blue edges with one end on γ′ and one on γ′′ and adapt the distance
of the two chains accordingly. Then we continue the combination on the basis of the red
edges. Only in the ‘bad’ case where a component B is added to a line segment ζB we have
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to be careful. First, when drawing LB using Proposition 4 we also include the blue edges
in the drawing. This only requires to choose the distances β as maxima over larger sets of
values be. Second, when placing the drawing ΛB in a narrow strip on the side of ζB we have
to be careful that this does not obstruct a visibility from the left side of the face to the
right side. Finally, all the remaining blue edges have to be drawn in the faces between γ′

and γ′′. Due to the invariant this is possible if we stretch the drawing between the two
chains sufficiently. Figure 7 illustrates an intermediate step of such a drawing procedure.

Figure 7: A partially drawn transversal structure. The figure shows a drawing of Γ4, these
are the vertices left of some element in C+

4 together with the induced edges.

It remains to see how Theorem 1 follows from Theorem 7. Let G be a 4-connected
triangulation and let G′ be obtained from G by deleting one of the outer edges. Now G′ is an
internally 4-connected inner triangulation of a 4-gon. Label the outer vertices ofG′ such that
the deleted edge is the edge s, t. Slightly stretching Theorem 7 we prescribe h(s) = −∞
and h(t) = ∞, this yields a planar straight-line drawing Γ of G′ such that the vertices
except s and t are represented by points on a set of at most

√
2n − 1 lines and the edges

connecting to s and t are vertical rays. Moreover with every edge v, s or v, t there is an
open cone K containing the vertical ray, such that the point representing v is the apex of K
and this is the only vertex contained in K. Now let g be a vertical line which is disjoint
from Γ. On g we find a point ps which is contained in all the upward cones and a point pt
contained in all the downward cones. Taking ps and pt as representatives for s and t we can
tilt the rays and make them finite edges ending in ps and pt respectively, and in addition
draw the edge ps, pt.

We conclude with a remark and two open problems.

• Our results are constructive and can be complemented with algorithms running in
polynomial time.

• Is π(G) ∈ O(
√
n) for every planar graph G on n vertices?

• What size of a grid is needed for drawings of 4-connected plane graphs on O(
√
n)

lines?
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