Abstract
Profiling attacks, especially those based on machine learning proved as very successful techniques in recent years when considering side-channel analysis of block ciphers implementations. At the same time, the results for implementations of public-key cryptosystems are very sparse. In this paper, we consider several machine learning techniques in order to mount a power analysis attack on EdDSA using the curve Curve25519 as implemented in WolfSSL. The results show all considered techniques to be viable and powerful options. Especially convolutional neural networks (CNNs) are effective as we can break the implementation with only a single measurement in the attack phase while requiring less than 500 measurements in the training phase. Interestingly, that same convolutional neural network was recently shown to perform extremely well for attacking the implementation of the AES cipher. Our results show that some common grounds can be established when using deep learning for profiling attacks on distinct cryptographic algorithms and their corresponding implementations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Pinata Board: https://www.riscure.com/product/pinata-training-target/
- 2.
Current Probe: https://www.riscure.com/product/current-probe/
- 3.
Available at https://zenodo.org/record/1436828#.XRhmfY-xWrw.
References
Database for EdDSA. https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records (2006). http://cr.yp.to/papers.html#curve25519. Citations in this document 1(5) (2016)
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)
Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography, vol. 265. Cambridge University Press, Cambridge (1999)
Bohy, L., Neve, M., Samyde, D., Quisquater, J.J.: Principal and independent component analysis for crypto-systems with hardware unmasked units. In: Proceedings of e-Smart 2003, Cannes, France, January 2003
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3
Carbone, M., et al.: Deep learning to evaluate secure RSA implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 132–161 (2019). https://doi.org/10.13154/tches.v2019.i2.132-161. https://tches.iacr.org/index.php/TCHES/article/view/7388
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3
Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17
Cid, C., Jacobson Jr., M.J. (eds.): SAC 2018. LNCS, vol. 11349. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7
Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005). http://dl.acm.org/citation.cfm?id=1046920.1194907
FIPS, PUB: 180–4. Secure hash standard (SHS), March 2012
Heuser, A., Picek, S., Guilley, S., Mentens, N.: Lightweight ciphers and their side-channel resilience. IEEE Trans. Comput. PP(99), 1 (2017). https://doi.org/10.1109/TC.2017.2757921
Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 148–179 (2019). https://doi.org/10.13154/tches.v2019.i3.148-179. https://tches.iacr.org/index.php/TCHES/article/view/8292
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10 (1995)
Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach based on machine learning. Int. J. Appl. Cryptol. 3(2), 97–115 (2014). https://doi.org/10.1504/IJACT.2014.062722
Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1
Medwed, M., Oswald, E.: Template attacks on ECDSA. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 14–27. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00306-6_2
Minka, T.P.: Automatic choice of dimensionality for PCA. In: Advances in Neural Information Processing Systems, pp. 598–604 (2001)
Nascimento, E., Chmielewski, Ł., Oswald, D., Schwabe, P.: Attacking embedded ECC implementations through cmov side channels. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 99–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_6
van den Oord, A., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted attacker framework. Cryptology ePrint Archive, Report 2019/168 (2019). https://eprint.iacr.org/2019/168
Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2019). https://doi.org/10.13154/tches.v2019.i1.209-237
Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective. In: 2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, 14–19 May 2017, pp. 4095–4102 (2017)
Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10
Poussier, R., Zhou, Y., Standaert, F.-X.: A systematic approach to the side-channel analysis of ECC implementations with worst-case horizontal attacks. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 534–554. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_26
Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. IACR Cryptology ePrint Archive 2018, 53 (2018)
Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking Ed25519 in WolfSSL. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 1–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_1
Schindler, W., Huss, S.A. (eds.): COSADE 2012. LNCS, vol. 7275. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26
Tuveri, N., Hassan, S.u., Garcia, C.P., Brumley, B.B.: Side-channel analysis of SM2: a late-stage featurization case study. In: Proceedings of the 34th Annual Computer Security Applications Conference, ACSAC 2018, pp. 147–160. ACM, New York (2018). https://doi.org/10.1145/3274694.3274725. http://doi.acm.org/10.1145/3274694.3274725
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2440-0
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Appendices
Appendix
A Ed25519 Domain Parameters
Ed25519 domain parameters:
-
Finite field \(F_q\), where \(q = 2^{255}-19\) is the prime.
-
Elliptic curve \(E(F_q)\), Curve25519
-
Base point B
-
Order of the point B, l
-
Hash function H, SHA-512 [13]
-
Key length \(u = 256\) (also length of the prime)
For more details on other parameters of Curve25519 and the corresponding curve equations we refer to Bernstein [2].
B EC Scalar Multiplication

Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Weissbart, L., Picek, S., Batina, L. (2019). One Trace Is All It Takes: Machine Learning-Based Side-Channel Attack on EdDSA. In: Bhasin, S., Mendelson, A., Nandi, M. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2019. Lecture Notes in Computer Science(), vol 11947. Springer, Cham. https://doi.org/10.1007/978-3-030-35869-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-35869-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35868-6
Online ISBN: 978-3-030-35869-3
eBook Packages: Computer ScienceComputer Science (R0)