Abstract
The evolution of Intelligent Transportation System in recent times necessitates the development of self-driving agents: the self-awareness consciousness. This paper aims to introduce a novel method to detect abnormalities based on internal cross-correlation parameters of the vehicle. Before the implementation of Machine Learning, the detection of abnormalities were manually programmed by checking every variable and creating huge nested conditions that are very difficult to track. Nowadays, it is possible to train a Dynamic Bayesian Network (DBN) model to automatically evaluate and detect when the vehicle is potentially misbehaving. In this paper, different scenarios have been set in order to train and test a switching DBN for Perimeter Monitoring Task using a semantic segmentation for the DBN model and Hellinger Distance metric for abnormality measurements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdi, H., Salkind, N.J.: Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks (2007). Agresti, A.: Categorical Data Analysis. Wiley, New York (1990), Agresti, A.: A survey of exact inference for contingency tables. Statist. Sci. 7, 131–153 (1992)
Baydoun, M., Campo, D., Kanapram, D., Marcenaro, L., Regazzoni, C.S.: Prediction of multi-target dynamics using discrete descriptors: an interactive approach. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3342–3346. IEEE (2019)
Baydoun, M., Campo, D., Sanguineti, V., Marcenaro, L., Cavallaro, A., Regazzoni, C.: Learning switching models for abnormality detection for autonomous driving. In: 2018 21st International Conference on Information Fusion (FUSION), pp. 2606–2613. IEEE (2018)
Baydoun, M., Ravanbakhsh, M., Campo, D., Marin, P., Martin, D., Marcenaro, L., Cavallaro, A., Regazzoni, C.S.: A multi-perspective approach to anomaly detection for self-aware embodied agents. arXiv preprint arXiv:1803.06579 (2018)
Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)
Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)
Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theory 49, 1858–1860 (2003)
Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing Systems, pp. 625–632 (1995)
Hartigan, J.A., Wong, M.A.: Algorithm as 136: a K-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)
Hershey, J.R., Olsen, P.A.: Approximating the kullback leibler divergence between Gaussian mixture models. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP 2007, vol. 4, pp. IV–317. IEEE (2007)
Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)
Kokuti, A., Hussein, A., MarÃn-Plaza, P., de la Escalera, A., GarcÃa, F.: V2x communications architecture for off-road autonomous vehicles. In: 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES), pp. 69–74. IEEE (2017)
Leite, A., Pinto, A., Matos, A.: A safety monitoring model for a faulty mobile robot. Robotics 7(3), 32 (2018)
Lewis, P.R., Platzner, M., Rinner, B., Tørresen, J., Yao, X.: Self-Aware Computing Systems. Springer (2016)
Lourenzutti, R., Krohling, R.A.: The hellinger distance in multicriteria decision making: an illustration to the topsis and todim methods. Expert Syst. Appl. 41(9), 4414–4421 (2014). https://doi.org/10.1016/j.eswa.2014.01.015
Marin-Plaza, P., Hussein, A., Martin, D., de la Escalera, A.: Global and local path planning study in a ROS-based research platform for autonomous vehicles. J. Adv. Transp. 2018, 1–10 (2018)
Pardo, L.: Statistical Inference Based on Divergence Measures. Chapman and Hall/CRC, New York (2005)
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)
Ravanbakhsh, M., Baydoun, M., Campo, D., Marin, P., Martin, D., Marcenaro, L., Regazzoni, C.S.: Learning multi-modal self-awareness models for autonomous vehicles from human driving. arXiv preprint arXiv:1806.02609 (2018)
Schlatow, J., Möstl, M., Ernst, R., Nolte, M., Jatzkowski, I., Maurer, M., Herber, C., Herkersdorf, A.: Self-awareness in autonomous automotive systems. In: Proceedings of the Conference on Design, Automation & Test in Europe, pp. 1050–1055. European Design and Automation Association (2017)
Xie, G., Gao, H., Huang, B., Qian, L., Wang, J.: A driving behavior awareness model based on a dynamic Bayesian network and distributed genetic algorithm. Int. J. Comput. Intell. Syst. 11(1), 469–482 (2018)
Xiong, G., Zhou, P., Zhou, S., Zhao, X., Zhang, H., Gong, J., Chen, H.: Autonomous driving of intelligent vehicle bit in 2009 future challenge of china. In: Intelligent Vehicles Symposium (IV), pp. 1049–1053. IEEE (2010)
Acknowledgement
Supported by SEGVAUTO 4.0 P2018/EMT-4362) and CICYT projects (TRA2015-63708-R and TRA2016-78886-C3-1-R).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kanapram, D., Marin-Plaza, P., Marcenaro, L., Martin, D., de la Escalera, A., Regazzoni, C. (2020). Self-awareness in Intelligent Vehicles: Experience Based Abnormality Detection. In: Silva, M., LuÃs Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-030-35990-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-35990-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35989-8
Online ISBN: 978-3-030-35990-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)