Skip to main content

ROS Framework for Perception and Dual-Arm Manipulation in Unstructured Environments

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1093))

Included in the following conference series:

Abstract

In a near future, robotic systems are expected to be able to confront more complex tasks in challenging scenarios. In this context, intelligent perception and dual-arm robotic manipulation capabilities are crucial for improving the autonomy and reliability of these systems. This paper addresses the development of an experimental platform conceived to facilitate the design and assessment of new perception and dual-arm control algorithms in unstructured environments. The proposed testbed is composed of a dual-arm robotic configuration endowed with a visual perception system and a simulation and control platform implemented in ROS (Robot Operating System). The robotic configuration consists of two manipulator arms of 6-DOF (Kinova MICO™) with brushless DC actuators controlled directly through PID controllers, whereas the perception system is formed by a high resolution RGB camera and a Time-of-Flight camera. ROS provides an open source collection of software frameworks, which simplify the task of creating complex and robust robot behaviours across a wide variety of robotic systems. The proposed approach will enable the easy testing and debugging of new applications with zero-risk damage to the real equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makris, S., Tsarouchi, P., Surdilovic, D., Krüger, J.: Intuitive dual arm robot programming for assembly operations. CIRP Ann. 63(1), 13–16 (2014)

    Article  Google Scholar 

  2. Zhao, Y., Gong, L., Liu, C., Huang, Y.: Dual-arm robot design and testing for harvesting tomato in greenhouse. IFAC-PapersOnLine 49(16), 161–165 (2016)

    Article  Google Scholar 

  3. Korayem, M.H., Shafei, A.M., Seidi, E.: Symbolic derivation of governing equations for dual-arm mobile manipulators used in fruit-picking and the pruning of tall trees. Comput. Electron. Agric. 105, 95–102 (2014)

    Article  Google Scholar 

  4. Wu, Q., Li, M., Qi, X., Hu, Y., Li, B., Zhang, J.: Coordinated control of a dual-arm robot for surgical instrument sorting tasks. Robot. Auton. Syst. 112, 1–12 (2019)

    Article  Google Scholar 

  5. Attia, M., Hossny, M., Nahavandi, S., Dalvand, M., Asadi, H.: Towards trusted autonomous surgical robots. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics, pp. 4083–4088 (2019)

    Google Scholar 

  6. Fleischer, H., Drews, R.R., Janson, J., Chinna Patlolla, B.R., Chu, X., Klos, M., Thurow, K.: Application of a dual-arm robot in complex sample preparation and measurement processes. J. Lab. Autom. 21(5), 671–681 (2016)

    Article  Google Scholar 

  7. Bustos, P., García-Varea, I., Martínez-Gómez, J., Mateos, J., Rodríguez-Ruiz, L., Sánchez, A.: Loki, a mobile manipulator for social robotics. In: Workshop of Physical Agents, pp. 1–8 (2012)

    Google Scholar 

  8. Quigley, M., Berkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan (2009)

    Google Scholar 

  9. MoveIt! Motion Planning Framework. https://moveit.ros.org/. Accessed 22 Apr 2019

  10. Robotics company—Robotic assistive technology—Kinova. https://www.kinovarobotics.com/en. Accessed 22 Apr 2019

  11. Campeau-Lecours, A., Lamontagne, H., Latour, S., Fauteux, P., Maheu, V., Boucher, F., L’Ecuyer, L.-J.C.: Kinova modular robot arms for service robotics applications. In: Rapid Automation. IGI Global (2019)

    Google Scholar 

  12. Fernández, R., Salinas, C., Montes, H., Sarria, J.: Multisensory system for fruit harvesting robots. Experimental testing in natural scenarios and with different kinds of crops. Sensors 14(12), 23885–23904 (2014)

    Article  Google Scholar 

  13. MESA Imaging SR4000/SR4500 User Manual Contents. http://www.realtechsupport.org/UB/SR/range_finding/SR4000_SR4500_Manual.pdf. Accessed 22 Apr 2019

  14. Prosilica GC2450—5.0 Megapixel Sony ICX625 CCD sensor - Allied Vision. https://www.alliedvision.com/en/products/cameras/detail/ProsilicaGC/2450.html. Accessed 22 Apr 2019

  15. Image Processing Toolbox – MATLAB. https://en.mathworks.com/products/image.html. Accessed 22 Apr 2019

  16. Robotics System Toolbox - MATLAB®; Simulink. https://en.mathworks.com/products/robotics.html. Accessed 22 Apr 2019

  17. Martinez, A., Fernández, E.: Learning ROS for Robotics Programming. Packt Publishing, Birmingham (2013)

    Google Scholar 

  18. Salinas, C., Fernández, R., Montes, H., Armada, M.: A new approach for combining time-of-flight and RGB cameras based on depth-dependent planar projective transformations. Sensors 15(9), 24615–24643 (2015)

    Article  Google Scholar 

  19. Taylor, Z.: http://www.zjtaylor.com/. Accessed 22 Apr 2019

  20. Concepts | MoveIt!. https://moveit.ros.org/documentation/concepts/. Accessed 22 Apr 2019

Download references

Acknowledgments

The research leading to these results has received funding from:

(i) FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/Proyecto ROBOCROP (DPI2017-84253-C2-1-R)

(ii) RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by “Programas de Actividades I + D en la Comunidad de Madrid” and cofunded by Structural Funds of the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Sepúlveda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sepúlveda, D., Fernández, R., Navas, E., González-de-Santos, P., Armada, M. (2020). ROS Framework for Perception and Dual-Arm Manipulation in Unstructured Environments. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_12

Download citation

Publish with us

Policies and ethics