Abstract
Robotics for selective harvesting is a promising emergent technology for decreasing cost of labour and improving profitability in precision agriculture. In order to contribute to advance the research in this field, this paper addresses the design of a dual-arm harvesting robot. The objective of the design was to achieve a modular torso that can be adapted to different types of plants, thus being able to vary its workspace in order to optimise harvesting. The torso holds a particular dual-arm robot system with 12 DoF, but its adaptability also allows implementing other types of arms. In addition, the torso has a variable z-axis as a support for vision cameras, which can be moved along this axis to improve image acquisition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
United Nations Department of Economic and Social Affairs. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables (2015)
Yael, E., Gaines, E.M.: Systems engineering of agricultural robot design. IEEE Trans. Syst. Man Cybern. 24, 1259–1265 (1994)
Mehta, S.S., Burks, T.F.: Vision-based control of robotic manipulator for citrus harvesting. Comput. Electron. Agric. 102, 146–158 (2014)
Davidson, J.R., Silwal, A., Hohimer, C.J., Karkee, M., Mo, C., Zhang, Q.: Proof-of-concept of a robotic apple harvester. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 634–639 (2016)
Van Henten, E.J., Hemming, J., Van Tuijl, B.A.J., Kornet, J.G., Meuleman, J., Bontsema, J., Van Os, E.A.: An autonomous robot for harvesting cucumbers in greenhouses. Auton. Robots 13, 241–258 (2002)
Li, Z., Li, P., Yang, H., Wang, Y.: Stability tests of two-finger tomato grasping for harvesting robots. Biosys. Eng. 116, 163–170 (2013)
Bac, C.W., Hemming, J., van Tuijl, B.A.J., Barth, R., Wais, E., van Henten, E.J.: Performance evaluation of a harvesting robot for sweet pepper. J. Field Robot. 34(6), 1123–1139 (2017)
Lehnert, C., English, A., McCool, C., Tow, A., Perez, T.: Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot. Autom. Lett. 2(2), 872–879 (2017)
Cubero, S., Diago, M.P., Blasco, J., Tardáguila, J., Millán, B., Aleixos, N.: A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosys. Eng. 117, 62–72 (2014)
Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., Kurita, M.: Evaluation of a strawberry-harvesting robot in a field test. Biosys. Eng. 105(2), 160–171 (2010)
Zion, B., Mann, M., Levin, D., Shilo, A., Rubinstein, D., Shmulevich, I.: Harvest-order planning for a multiarm robotic harvester. Comput. Electron. Agric. 103, 75–81 (2014)
Bak, T., Jakobsen, H.: Agricultural Robotic Platform with Four Wheel Steering for Weed Detection. Biosys. Eng. 87, 125–136 (2004)
Baerveldt, A.: An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robots 13, 21–35 (2002)
Zhao, Y., Gong, L., Liu, C., Huang, Y.: Dual-arm robot design and testing for harvesting tomato in greenhouse. IFAC-PapersOnLine 49(16), 161–165 (2016)
Tabile, R.A., Godoy, E.P., Pereira, R.R.D., Tangerino, G.T., Porto, A.J.V., Inamasu, R.Y.: Design and development of the architecture of an agricultural mobile robot. Engharia Agrícola 31, 130–142 (2011)
Agostini, A., Alenyà, G., Fischbach, A., Scharr, H., Wörgötter, F., Torras, C.: A cognitive architecture for automatic gardening. Comput. Electron. Agric. 138, 69–79 (2017)
Font, D., Pallejà, T., Tresanchez, M., Runcan, D., Moreno, J., Martínez, D., Teixidó, M., Palacín, J.: A proposal for automatic fruit harvesting by combining a low cost stereovision camera and a robotic arm. Sensors 14(7), 11557–11579 (2014)
Blanes, C., Mellado, M., Ortiz, C., Valera, A.: Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables. Span. J. Agric. Res. 9(4), 1130–1141 (2011)
Hwan, H., Kim, C.S., Park, D.Y.: Development of multi-functional tele-operative modular robotic system for watermelon cultivation in greenhouse. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2003, Kobe, Japan, vol. 2, pp. 1344–1349 (2003)
Madsen, T.: Mobile robot for weeding. Unpublished MSc. thesis Danish Technical University (2001)
Campeau-Lecours, A., Lamontagne, H., Latour, S., Fauteux, P., Maheu, V., Boucher, F., Deguire, C., L’Ecuyer, L.-J.C.: Kinova modular robot arms for service robotics applications. Int. J. Robot. Appl. Technol. 5, 49–71 (2017)
Salinas, C., Fernández, R., Montes, H., Armada, M.: A new approach for combining time-of-flight and RGB cameras based on depth-dependent planar projective transformations. Sensors 15, 24615–24643 (2015)
Fernández, R., Salinas, C., Montes, H., Sarria, J.: Multisensory system for fruit harvesting robots. Experimental testing in natural scenarios and with different kinds of crops. Sensors 14, 23885–23904 (2014)
Tsarouchi, P., Makris, S., Michalos, G., Stefos, M., Fourtakas, K., Kaltsoukalas, K., Kontrovrakis, D., Chryssolouris, G.: Robotized assembly process using dual arm robot. Procedia CIRP 23, 47–52 (2014)
Acknowledgments
The research leading to these results has received funding from:
(i) FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/Proyecto ROBOCROP (DPI2017-84253-C2-1-R).
(ii) RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by “Programas de Actividades I+D en la Comunidad de Madrid” and cofunded by Structural Funds of the EU.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Navas, E., Fernández, R., Sepúlveda, D., Armada, M., Gonzalez-de-Santos, P. (2020). Modular Dual-Arm Robot for Precision Harvesting. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-36150-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36149-5
Online ISBN: 978-3-030-36150-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)