Skip to main content

Modular Dual-Arm Robot for Precision Harvesting

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1093))

Included in the following conference series:

  • 1603 Accesses

Abstract

Robotics for selective harvesting is a promising emergent technology for decreasing cost of labour and improving profitability in precision agriculture. In order to contribute to advance the research in this field, this paper addresses the design of a dual-arm harvesting robot. The objective of the design was to achieve a modular torso that can be adapted to different types of plants, thus being able to vary its workspace in order to optimise harvesting. The torso holds a particular dual-arm robot system with 12 DoF, but its adaptability also allows implementing other types of arms. In addition, the torso has a variable z-axis as a support for vision cameras, which can be moved along this axis to improve image acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. United Nations Department of Economic and Social Affairs. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables (2015)

    Google Scholar 

  2. Yael, E., Gaines, E.M.: Systems engineering of agricultural robot design. IEEE Trans. Syst. Man Cybern. 24, 1259–1265 (1994)

    Article  Google Scholar 

  3. Mehta, S.S., Burks, T.F.: Vision-based control of robotic manipulator for citrus harvesting. Comput. Electron. Agric. 102, 146–158 (2014)

    Article  Google Scholar 

  4. Davidson, J.R., Silwal, A., Hohimer, C.J., Karkee, M., Mo, C., Zhang, Q.: Proof-of-concept of a robotic apple harvester. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 634–639 (2016)

    Google Scholar 

  5. Van Henten, E.J., Hemming, J., Van Tuijl, B.A.J., Kornet, J.G., Meuleman, J., Bontsema, J., Van Os, E.A.: An autonomous robot for harvesting cucumbers in greenhouses. Auton. Robots 13, 241–258 (2002)

    Article  Google Scholar 

  6. Li, Z., Li, P., Yang, H., Wang, Y.: Stability tests of two-finger tomato grasping for harvesting robots. Biosys. Eng. 116, 163–170 (2013)

    Article  Google Scholar 

  7. Bac, C.W., Hemming, J., van Tuijl, B.A.J., Barth, R., Wais, E., van Henten, E.J.: Performance evaluation of a harvesting robot for sweet pepper. J. Field Robot. 34(6), 1123–1139 (2017)

    Article  Google Scholar 

  8. Lehnert, C., English, A., McCool, C., Tow, A., Perez, T.: Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot. Autom. Lett. 2(2), 872–879 (2017)

    Article  Google Scholar 

  9. Cubero, S., Diago, M.P., Blasco, J., Tardáguila, J., Millán, B., Aleixos, N.: A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosys. Eng. 117, 62–72 (2014)

    Article  Google Scholar 

  10. Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., Kurita, M.: Evaluation of a strawberry-harvesting robot in a field test. Biosys. Eng. 105(2), 160–171 (2010)

    Article  Google Scholar 

  11. Zion, B., Mann, M., Levin, D., Shilo, A., Rubinstein, D., Shmulevich, I.: Harvest-order planning for a multiarm robotic harvester. Comput. Electron. Agric. 103, 75–81 (2014)

    Article  Google Scholar 

  12. Bak, T., Jakobsen, H.: Agricultural Robotic Platform with Four Wheel Steering for Weed Detection. Biosys. Eng. 87, 125–136 (2004)

    Article  Google Scholar 

  13. Baerveldt, A.: An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robots 13, 21–35 (2002)

    Article  Google Scholar 

  14. Zhao, Y., Gong, L., Liu, C., Huang, Y.: Dual-arm robot design and testing for harvesting tomato in greenhouse. IFAC-PapersOnLine 49(16), 161–165 (2016)

    Article  Google Scholar 

  15. Tabile, R.A., Godoy, E.P., Pereira, R.R.D., Tangerino, G.T., Porto, A.J.V., Inamasu, R.Y.: Design and development of the architecture of an agricultural mobile robot. Engharia Agrícola 31, 130–142 (2011)

    Article  Google Scholar 

  16. Agostini, A., Alenyà, G., Fischbach, A., Scharr, H., Wörgötter, F., Torras, C.: A cognitive architecture for automatic gardening. Comput. Electron. Agric. 138, 69–79 (2017)

    Article  Google Scholar 

  17. Font, D., Pallejà, T., Tresanchez, M., Runcan, D., Moreno, J., Martínez, D., Teixidó, M., Palacín, J.: A proposal for automatic fruit harvesting by combining a low cost stereovision camera and a robotic arm. Sensors 14(7), 11557–11579 (2014)

    Article  Google Scholar 

  18. Blanes, C., Mellado, M., Ortiz, C., Valera, A.: Review. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables. Span. J. Agric. Res. 9(4), 1130–1141 (2011)

    Article  Google Scholar 

  19. Hwan, H., Kim, C.S., Park, D.Y.: Development of multi-functional tele-operative modular robotic system for watermelon cultivation in greenhouse. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2003, Kobe, Japan, vol. 2, pp. 1344–1349 (2003)

    Google Scholar 

  20. Madsen, T.: Mobile robot for weeding. Unpublished MSc. thesis Danish Technical University (2001)

    Google Scholar 

  21. Campeau-Lecours, A., Lamontagne, H., Latour, S., Fauteux, P., Maheu, V., Boucher, F., Deguire, C., L’Ecuyer, L.-J.C.: Kinova modular robot arms for service robotics applications. Int. J. Robot. Appl. Technol. 5, 49–71 (2017)

    Google Scholar 

  22. Salinas, C., Fernández, R., Montes, H., Armada, M.: A new approach for combining time-of-flight and RGB cameras based on depth-dependent planar projective transformations. Sensors 15, 24615–24643 (2015)

    Article  Google Scholar 

  23. Fernández, R., Salinas, C., Montes, H., Sarria, J.: Multisensory system for fruit harvesting robots. Experimental testing in natural scenarios and with different kinds of crops. Sensors 14, 23885–23904 (2014)

    Article  Google Scholar 

  24. Tsarouchi, P., Makris, S., Michalos, G., Stefos, M., Fourtakas, K., Kaltsoukalas, K., Kontrovrakis, D., Chryssolouris, G.: Robotized assembly process using dual arm robot. Procedia CIRP 23, 47–52 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from:

(i) FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/Proyecto ROBOCROP (DPI2017-84253-C2-1-R).

(ii) RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331, funded by “Programas de Actividades I+D en la Comunidad de Madrid” and cofunded by Structural Funds of the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Navas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Navas, E., Fernández, R., Sepúlveda, D., Armada, M., Gonzalez-de-Santos, P. (2020). Modular Dual-Arm Robot for Precision Harvesting. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_13

Download citation

Publish with us

Policies and ethics