Skip to main content

Evaluating an AEF Swimming Microrobot Using a Hardware-in-the-loop Testbed

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1093))

Included in the following conference series:

  • 1296 Accesses

Abstract

This paper studies the swimming and control effectiveness of a 4-link artificial eukaryotic flagellum (AEF) swimming microrobot through hardware-in-the-loop (HIL) experiments, which are executed in an environment characterized by high mechanical stress. The tested HIL experiment consists of a simulator of the robot, developed in the MATLAB/ Simulink environment, and a microcontroller Atmel ATmega32u4, where the control of the robot is programmed. Data exchange between the simulator and microcontroller is carried out through serial protocol via universal asynchronous receiver-transmitter (UART). For comparison purposes, two control strategies, namely fractional order proportional-derivative (PD\(^{\mu }\)) and integer order proportional-integral-derivative (PID) controllers, are considered for the robot to emulate a non-reciprocal motion. Two types of these controllers are implemented and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, A., Kosa, G.: Piezoelectric beam for intrabody propulsion controlled by embedded sensing. IEEE/ASME Trans. Mechatron. 21(3), 1528–1539 (2016)

    Article  Google Scholar 

  2. Alouges, F., DeSimone, A., Giraldi, L., Zoppello, M.: Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers. Int. J. Non-Linear Mech. 56, 132–141 (2013)

    Article  Google Scholar 

  3. Arrieta, O., Vilanova, R.: Simple PID tuning rules with guaranteed \(M_s\) robustness achievement. IFAC Proc. Volumes 44(1), 12042–12047 (2011)

    Article  Google Scholar 

  4. Bogue, R.: Miniature and microrobots: a review of recent developments. Ind. Rob. Int. J. 42(2), 98–102 (2015)

    Article  Google Scholar 

  5. Ceylan, H., Giltinan, J., Kozielski, K., Sitti, M.: Mobile microrobots for bioengineering applications. Lab Chip 17(10), 1705–1724 (2017)

    Article  Google Scholar 

  6. Diller, E., Sitti, M.: Micro-scale mobile robotics. Found. Trends® Rob. 2(3), 143–259 (2013)

    Article  Google Scholar 

  7. Gray, J., Hancock, G.J.: The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32(4), 802–814 (1955)

    Google Scholar 

  8. Hancock, G.J.: The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. London A Mathe. Phys. Eng. Sci. 217(1128), 96–121 (1953)

    Article  MathSciNet  Google Scholar 

  9. Hariri, H., Bernard, Y., Razek, A.: A traveling wave piezoelectric beam robot. Smart Mater. Struct. 23(2), 025013 (2013)

    Article  Google Scholar 

  10. Hunter, I.W., Doukoglou, T.D., Lafontaine, S.R., Charette, P.G., Jones, L.A., Sagar, M.A., Mallinson, G.D., Hunter, P.J.: A teleoperated microsurgical robot and associated virtual environment for eye surgery. Presence Teleoper. Virtual Environ. 2(4), 265–280 (1993)

    Article  Google Scholar 

  11. Kósa, G., Jakab, P., Hata, N., Jólesz, F., Neubach, Z., Shoham, M., Zaaroor, M., Székely, G.: Flagellar swimming for medical micro robots: theory, experiments and application. In: Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2008), pp. 258–263 (2008)

    Google Scholar 

  12. Lauga, E.: Life at high Deborah number. EPL (Europhys. Lett.) 86(6), 64001 (2009)

    Article  Google Scholar 

  13. Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9, 305–317 (1960)

    Article  MathSciNet  Google Scholar 

  14. López, M.A., Prieto, J., Traver, J.E., Tejado, I., Vinagre, B.M., Petrás, I.: Testing non reciprocal motion of a swimming flexible small robot with single actuation. In: Proceedings of the 19th International Carpathian Control Conference, pp. 312–317 (2018)

    Google Scholar 

  15. Mancha, E., Traver, J.E., Tejado, I., Prieto, J., Vinagre, B.M., Feliu, V.: Artificial flagellum microrobot. Design and simulation in COMSOL. In: Advances in Intelligent Systems and Computing, vol. 693, pp. 491–501. Springer, Heidelberg (2018)

    Google Scholar 

  16. Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Ann. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  17. Paprotny, I., Bergbreiter, S.: Small-scale robotics: an introduction. In: Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, vol. 8336, pp. 1–15. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Prieto-Arranz, J., Traver, J.E., López, M.A., Tejado, I., Vinagre, B.M.: Study in COMSOL of the generation of traveling waves in an AEF robot by piezoelectric actuation. Actas de las XXXIX Jornadas de Automática, Badajoz, 5–7 de Septiembre de 2018, pp. 748–755 (2018)

    Google Scholar 

  19. Proakis, J., Manolakis, D.: Digital Signal Processing: Pearson New International Edition. Pearson Education Limited (2013)

    Google Scholar 

  20. Purcell, E.M.: Life at low Reynolds number. Am. J. Phys. 45(1), 3–11 (1977)

    Article  Google Scholar 

  21. Raz, O., Avron, J.E.: Swimming, pumping and gliding at low Reynolds numbers. New J. Phys. 9, 437 (2007)

    Article  Google Scholar 

  22. Sitti, M.: Microscale and nanoscale robotics systems: characteristics, state of the art, and grand challenges. IEEE Rob. Autom. Mag. 14(1), 53–60 (2007)

    Article  Google Scholar 

  23. Tejado, I., Serrano, J., Pérez, E., Torres, D., Vinagre, B.M.: Low-cost hardware-in-the-loop testbed of a mobile robot to support learning in automatic control and robotics. IFAC-PapersOnLine 49(6), 242–247 (2016)

    Article  MathSciNet  Google Scholar 

  24. Traver, J.E., Tejado, I., Prieto-Arranz, J., Nuevo-Gallardo, C., Vinagre, B.M.: Improved locomotion of an AEF swimming robot using fractional order control. In: IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2019) (Accept) (2019)

    Google Scholar 

  25. Traver, J.E., Tejado, I., Vinagre, B.M.: A comparative study of planar waveforms for propulsion of a joined artificial bacterial flagella swimming robot. In: Proceedings of the 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT 2017), pp. 550–555 (2017)

    Google Scholar 

Download references

Acknowledgments

This work has been supported in part by the Spanish Agencia Estatal de Investigación (AEI) under the project DPI2016-80547-R (Ministerio de Economía y Competitividad), in part by the Consejería de Economía e Infraestructuras (Junta de Extremadura) under the grant “Ayuda a Grupos de Investigación de Extremadura” (no. GR18159) and the project IB18109, and in part by the European Social Fund (FEDER, EU) and the European Regional Development Fund “A way to make Europe”. José Emilio Traver would like to thank the Ministerio de Educación, Cultura y Deporte its support through the scholarship no. FPU16/2045 of the FPU Program. Cristina Nuevo-Gallardo would like to thank University of Extremadura its support through the scholarship “Plan Propio de Iniciación a la Investigación, Desarrollo Tecnológico e Innovación 2018”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Emilio Traver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Traver, J.E., Tejado, I., Nuevo-Gallardo, C., Prieto-Arranz, J., López, M.A., Vinagre, B.M. (2020). Evaluating an AEF Swimming Microrobot Using a Hardware-in-the-loop Testbed. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_43

Download citation

Publish with us

Policies and ethics