Skip to main content

Deep IA-BI and Five Actions in Circling

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

Abstract

Deep bidirectional Intelligence (BI) via YIng YAng (IA) system, or shortly Deep IA-BI, is featured by circling A-mapping and I-mapping (or shortly AI circling) that sequentially performs each of five actions. A basic foundation of IA-BI is bidirectional learning that makes the cascading of A-mapping and I-mapping (shortly A-I cascading) approximate an identical mapping, with a nature of layered, topology-preserved, and modularised development. One exemplar is Lmser that improves autoencoder by incremental bidirectional layered development of cognition, featured by two dual natures DPN and DCW. Two typical IA-BI scenarios are further addressed. One considers bidirectional cognition and image thinking, together with a proposal that combines theories of Hubel-Wiesel’s versus Chen’s. The other considers bidirectional integration of cognition, knowledge accumulation, and abstract thinking for improving implementation of searching, optimising, and reasoning. Particularly, an IA-DSM scheme is proposed for solving a doubly stochastic matrix (DSM) featured combinatorial tasks such as travelling salesman problem, and also a Subtree driven reasoning scheme is proposed for improving production rule based reasoning. In addition, some remarks are made on relations of Deep IA-BI to Hubel and Wiesel theory, Sperry theory, and A5 problem solving paradigm.

L. Xu—Supported by the Zhi-Yuan Chair Professorship Start-up Grant WF220103010 from Shanghai Jiao Tong University, and National New Generation Artificial Intelligence Project 2018AAA0100700.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    “Ying” is spelled “Yin” in the current Chinese Pin Yin system that could be backtracked to over 400 years from the initiatives by M. Ricci and N. Trigault. But, the length of ‘Yin’ lost its harmony with Yang, thus ‘Ying’ is preferred since 1995 [42].

References

  1. Ballard, D.H.: Modular learning in neural networks. In: AAAI, pp. 279–284 (1987)

    Google Scholar 

  2. Bell, A.J., Sejnowski, T.J.: The independent components of natural scenes are edge filters. Vision Res. 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  3. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59(4–5), 291–294 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, L.: Topological structure in visual perception. Science 218(4573), 699–700 (1982)

    Article  Google Scholar 

  5. Chen, L.: The topological approach to perceptual organization. Vis. Cogn. 12(4), 553–637 (2005)

    Article  Google Scholar 

  6. Cooper, L.N., Liberman, F., Oja, E.: A theory for the acquisition and loss of neuron specificity in visual cortex. Biol. Cybern. 33(1), 9–28 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cottrell, G., Munro, P., Zipser, D.: Image compression by backpropagation: an example of extensional programming. In: Sharkey, N.E. (ed.) Models of Cognition: A Review of Cognition Science, Nonvood, pp. 208–240 (l989)

    Google Scholar 

  8. Dang, C., Xu, L.: A barrier function method for the nonconvex quadratic programming problem with box constraints. J. Global Optim. 18(2), 165–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dang, C., Xu, L.: A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem. Neural Netw. 14(2), 217–230 (2001)

    Article  Google Scholar 

  10. Dang, C., Xu, L.: A Lagrange multiplier and hopfield-type barrier function method for the traveling salesman problem. Neural Comput. 14(2), 303–324 (2002)

    Article  MATH  Google Scholar 

  11. Dayan, P., Hinton, G.E., Neal, R.M., Zemel, R.S.: The Helmholtz machine. Neural Comput. 7(5), 889–904 (1995)

    Article  Google Scholar 

  12. Elman, J.L., Zipser, D.: Learning the hidden structure of speech. J. Acoust. Soc. Am. 83(4), 1615–1626 (1988)

    Article  Google Scholar 

  13. Fukushima, K.: Cognitron: a self-organizing multilayered neural network. Biol. Cybern. 20(3–4), 121–136 (1975)

    Article  Google Scholar 

  14. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  15. Fukushima, K., Miyake, S., Ito, T.: Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans. Syst. Man Cybern. 5, 826–834 (1983)

    Article  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M.: The wake-sleep algorithm for unsupervised neural networks. Science 268(5214), 1158–1161 (1995)

    Article  Google Scholar 

  18. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hinton, G.E., Sejnowski, T.J., et al.: Learning and relearning in Boltzmann machines. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, no. 282–317, p. 2 (1986)

    Google Scholar 

  21. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  23. Huang, W., Tu, S., Xu, L.: Revisit Lmser and its further development based on convolutional layers. CoRR abs/1904.06307 (2019)

    Google Scholar 

  24. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

    Article  Google Scholar 

  25. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)

    Article  Google Scholar 

  26. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

    Google Scholar 

  27. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253–256. IEEE (2010)

    Google Scholar 

  28. Li, P., Tu, S., Xu, L.: GAN flexible Lmser for super-resolution. In: ACM International Conference on Multimedia, 21–25 October 2019, Nice, France. ACM (2019)

    Google Scholar 

  29. Linsker, R.: Self-organization in a perceptual network. Computer 21(3), 105–117 (1988)

    Article  Google Scholar 

  30. Martin, K.A.: A brief history of the feature detector. Cereb. Cortex 4(1), 1–7 (1994)

    Article  MathSciNet  Google Scholar 

  31. Pan, Y.: The synthesis reasonning. Pattern Recog. Artif. Intell. 9, 201–208 (1996)

    Google Scholar 

  32. Pearl, J.: Fusion, propagation, and structuring in belief networks. Artif. Intell. 29(3), 241–288 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)

    MATH  Google Scholar 

  34. Qian, X.: On thinking sciences. Chin. J. Nat. 8, 566 (1983)

    Google Scholar 

  35. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  36. Rubner, J., Schulten, K.: Development of feature detectors by self-organization. Biol. Cybern. 62(3), 193–199 (1990)

    Article  Google Scholar 

  37. Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2(6), 459–473 (1989)

    Article  Google Scholar 

  38. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  39. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017)

    Article  Google Scholar 

  40. Xu, L.: Least MSE reconstruction for self-organization: (i) multi-layer neural nets and (ii) further theoretical and experimental studies on one layer nets. In: Proceedings of International Joint Conference on Neural Networks-1991-Singapore, pp. 2363–2373 (1991)

    Google Scholar 

  41. Xu, L.: Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches. In: Proceedings of World Congress on Neutral Networks, pp. 399–404 (1994)

    Google Scholar 

  42. Xu, L.: Bayesian-Kullback coupled Ying-Yang machines: unified learnings and new results on vector quantization. In: Proceedings of the International Conference on Neural Information Process (ICONIP 1995), pp. 977–988 (1995)

    Google Scholar 

  43. Xu, L.: On the hybrid LT combinatorial optimization: new U-shape barrier, sigmoid activation, least leaking energy and maximum entropy. In: Proceedings of the ICONIP, vol. 95, pp. 309–312 (1995)

    Google Scholar 

  44. Xu, L., Oja, E., Kultanen, P.: A new curve detection method Randomized Hough Transform (RHT). Pattern Recogn. Lett. 11, 331–338 (1990)

    Article  MATH  Google Scholar 

  45. Xu, L.: Investigation on signal reconstruction, search technique, and pattern recognition. Ph.D. dissertation, Tsinghua University, December 1986

    Google Scholar 

  46. Xu, L.: Least mean square error reconstruction principle for self-organizing neural-nets. Neural Netw. 6(5), 627–648 (1993)

    Article  Google Scholar 

  47. Xu, L.: A unified learning scheme: Bayesian-Kullback Ying-Yang machine. In: Advances in Neural Information Processing Systems, pp. 444–450 (1996)

    Google Scholar 

  48. Xu, L.: BYY prod-sum factor systems and harmony learning. Invited talk. In: Proceedings of International Conference on Neural Information Processing (ICONIP 2000), vol. 1, pp. 548–558 (2000)

    Google Scholar 

  49. Xu, L.: Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Netw. 16(5–6), 817–825 (2003)

    Article  Google Scholar 

  50. Xu, L.: A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recogn. 40(8), 2129–2153 (2007)

    Article  MATH  Google Scholar 

  51. Xu, L.: Bayesian Ying-Yang system, best harmony learning, and five action circling. Front. Electr. Electron. Eng. China 5(3), 281–328 (2010)

    Article  MathSciNet  Google Scholar 

  52. Xu, L.: Codimensional matrix pairing perspective of BYY harmony learning: hierarchy of bilinear systems, joint decomposition of data-covariance, and applications of network biology. Front. Electr. Electron. Eng. China 6, 86–119 (2011)

    Article  Google Scholar 

  53. Xu, L.: On essential topics of BYY harmony learning: current status, challenging issues, and gene analysis applications. Front. Electr. Electron. Eng. 7(1), 147–196 (2012)

    Google Scholar 

  54. Xu, L.: Further advances on Bayesian Ying Yang harmony learning. Appl. Inform. 2(5) (2015)

    Google Scholar 

  55. Xu, L.: The third wave of artificial intelligence. KeXue (Sci. Chin.) 69(3), 1–5 (2017). (in Chinese)

    Google Scholar 

  56. Xu, L.: Deep bidirectional intelligence: AlphaZero, deep IA search, deep IA infer, and TPC causal learning. Appl. Inform. 5(5), 38 (2018)

    Google Scholar 

  57. Xu, L.: An overview and perspectives on bidirectional intelligence: Lmser duality, double ia harmony, and causal computation. IEEE/CAA J. Autom. Sin. 6(4), 865–893 (2019)

    Article  MathSciNet  Google Scholar 

  58. Xu, L., Oja, E.: Randomized Hough transform: basic mechanisms, algorithms, and computational complexities. CVGIP Image Underst. 57(2), 131–154 (1993)

    Article  Google Scholar 

  59. Xu, L., Yan, P., Chang, T.: Algorithm cnneim-a and its mean complexity. In: Proceedings of 2nd International Conference on Computers and Applications, Beijing, 24–26 June 1987, pp. 494–499. IEEE Press (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, L. (2019). Deep IA-BI and Five Actions in Circling. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics