Skip to main content

Structure-Preserving Guided Image Filtering

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

Abstract

Guided filter behaves as a structure-transferring filter which takes advantage of the guidance image. Nevertheless, it is likely to suffer from structure information loss problem and artifacts would be introduced in practical tasks, e.g., detail enhancement. We in this paper propose to deal with the structure loss problem. We modify the original objective function and develop a re-weighted algorithm to proceed the filtering process iteratively. The proposed filter inherits good properties of guided filter and is more capable in avoiding structure information loss. Many vision tasks can be benefited from the proposed filter. Few applications we outline include flash/no-flash image restoration, image dehazing, detail enhancement, HDR compression, and image matting. Experimental comparisons with relative methods for these tasks demonstrate the effectiveness of the proposed filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aurich, V., Weule, J.: Non-linear Gaussian filters performing edge preserving diffusion. In: Sagerer, G., Posch, S., Kummert, F. (eds.) Mustererkennung, 17. DAGM-Symposium, pp. 538–545. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-79980-8_63

    Chapter  Google Scholar 

  2. Bae, S., Paris, S., Durand, F.: Two-scale tone management for photographic look. ACM ToG 25(3), 637–645 (2006)

    Article  Google Scholar 

  3. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: CVPR, pp. 1674–1682 (2016)

    Google Scholar 

  4. Cai, B., Xing, X., Xu, X.: Edge/structure preserving smoothing via relativity-of-Gaussian. In: ICIP, pp. 250–254 (2017)

    Google Scholar 

  5. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE TIP 25(11), 5187–5198 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Chen, Q., Li, D., Tang, C.K.: KNN matting. IEEE TPAMI 35(9), 2175–2188 (2013)

    Article  Google Scholar 

  7. Cho, D., Tai, Y.-W., Kweon, I.: Natural image matting using deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 626–643. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_39

    Chapter  Google Scholar 

  8. Cho, H., Lee, H., Kang, H., Lee, S.: Bilateral texture filtering. ACM ToG 33(4), 128:1–128:8 (2014)

    Article  Google Scholar 

  9. Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley series in Probability and Mathematical Statistics, 2nd edn. Wiley, New York (1981)

    MATH  Google Scholar 

  10. Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting. ACM ToG 23(3), 673–678 (2004)

    Article  Google Scholar 

  11. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM ToG 27(3), 67:1–67:10 (2008)

    Article  Google Scholar 

  12. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM ToG 30(4), 1–12 (2011)

    Article  Google Scholar 

  13. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE TPAMI 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  14. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE TPAMI 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  15. Hu, Z., Cho, S., Wang, J., Yang, M.: Deblurring low-light images with light streaks. In: CVPR, pp. 3382–3389 (2014)

    Google Scholar 

  16. Kou, F., Chen, W., Wen, C., Li, Z.: Gradient domain guided image filtering. IEEE TIP 24(11), 4528–4539 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM ToG 26(3), 70 (2007)

    Article  Google Scholar 

  18. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE TPAMI 30(2), 228–242 (2008)

    Article  Google Scholar 

  19. Li, Z., Zheng, J., Zhu, Z., Yao, W., Wu, S.: Weighted guided image filtering. IEEE TIP 24(1), 120–129 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Liu, W., Chen, X., Shen, C., Yu, J., Wu, Q., Yang, J.: Robust guided image filtering. Computing Research Repository abs/1703.09379 (2017). http://arxiv.org/abs/1703.09379

  21. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: ICCV, pp. 617–624 (2013)

    Google Scholar 

  22. Pan, J., Hu, Z., Su, Z., Yang, M.: Deblurring text images via L0-regularized intensity and gradient prior. In: CVPR, pp. 2901–2908 (2014)

    Google Scholar 

  23. Pan, J., Lin, Z., Su, Z., Yang, M.: Robust kernel estimation with outliers handling for image deblurring. In: CVPR, pp. 2800–2808 (2016)

    Google Scholar 

  24. Pan, J., Sun, D., Pfister, H.: Blind image deblurring using dark channel prior. In: CVPR, pp. 1628–1636 (2016)

    Google Scholar 

  25. Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M.F., Hoppe, H., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM ToG 23(3), 664–672 (2004)

    Article  Google Scholar 

  26. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  27. Shahrian, E., Rajan, D., Price, B.L., Cohen, S.: Improving image matting using comprehensive sampling sets. In: CVPR, pp. 636–643 (2013)

    Google Scholar 

  28. Shen, X., Zhou, C., Xu, L., Jia, J.: Mutual-structure for joint filtering. IJCV 125(1–3), 19–33 (2017)

    Article  MathSciNet  Google Scholar 

  29. Sylvain, P., Samuel, W.H., Jan, K.: Local laplacian filters: edge-aware image processing with a laplacian pyramid. Commun. ACM 58(3), 81–91 (2015)

    Article  Google Scholar 

  30. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846 (1998)

    Google Scholar 

  31. Varnousfaderani, E.S., Rajan, D.: Weighted color and texture sample selection for image matting. IEEE TIP 22(11), 4260–4270 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \(L{}_{\text{0}}\) gradient minimization. ACM ToG 30(6), 174:1–174:12 (2011)

    Google Scholar 

  33. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM ToG 31(6), 139:1–139:10 (2012)

    Google Scholar 

  34. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 815–830. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_53

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by National Natural Science Foundation of China (No. 61572099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixun Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Su, Z., Liang, S. (2019). Structure-Preserving Guided Image Filtering. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics