Skip to main content

Deep Blind Image Inpainting

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

Abstract

Image inpainting is a challenging problem as it needs to fill the information of the corrupted regions. Most of the existing inpainting algorithms assume that the positions of the corrupted regions are known. Different from existing methods that usually make some assumptions on the corrupted regions, we present an efficient blind image inpainting algorithm to directly restore a clear image from a corrupted input. Our algorithm is motivated by the residual learning algorithm which aims to learn the missing information in corrupted regions. However, directly using existing residual learning algorithms in image restoration does not well solve this problem as little information is available in the corrupted regions. To solve this problem, we introduce an encoder and decoder architecture to capture more useful information and develop a robust loss function to deal with outliers. Our algorithm can predict the missing information in the corrupted regions, thus facilitating the clear image restoration. Both qualitative and quantitative experimental demonstrate that our algorithm can deal with the corrupted regions of arbitrary shapes and performs favorably against state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE TPAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM TOG 28(3), 24 (2009)

    Article  Google Scholar 

  3. Bertalmio, M., Bertozzi, A.L., Sapiro, G.: Navier-stokes, fluid dynamics, and image and video inpainting. In: CVPR, pp. 355–362 (2001)

    Google Scholar 

  4. Bertalmio, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture image inpainting. IEEE TIP 12, 882–889 (2003)

    Google Scholar 

  5. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH, pp. 417–424 (2000)

    Google Scholar 

  6. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: ICCV, pp. 1511–1520 (2017)

    Google Scholar 

  7. Dong, B., Ji, H., Li, J., Shen, Z., Xu, Y.: Wavelet frame based blind image inpainting. ACM TOG 32(2), 268–279 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE TPAMI 38(2), 295–307 (2016)

    Article  Google Scholar 

  9. Goodfellow, I.J., et al.: Generative Adversarial Networks. arXiv (2014)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV, pp. 1026–1034 (2015)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: ICCV, pp. 5197–5206 (2015)

    Google Scholar 

  13. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4), 1–14 (2017)

    Article  Google Scholar 

  14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. arXiv (2016)

    Google Scholar 

  15. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR, pp. 1646–1654 (2016)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)

    Google Scholar 

  17. Levin, A., Zomet, A., Weiss, Y.: Learning how to inpaint from global image statistics. In: ICCV, vol 1, pp. 305–312 (2003)

    Google Scholar 

  18. Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: CVPR, pp. 3911–3919 (2017)

    Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, pp. 416–423 (2001)

    Google Scholar 

  20. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders - feature learning by inpainting. In: CVPR, pp. 2536–2544 (2016)

    Google Scholar 

  21. Ren, J.S.J., Xu, L., Yan, Q., Sun, W.: Shepard convolutional neural networks. In: NIPS, pp. 901–909 (2015)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv (2015)

    Google Scholar 

  23. Roth, S., Black, M.J.: Fields of experts. IJCV 82(2), 205–229 (2009)

    Article  Google Scholar 

  24. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883 (2016)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv (2014)

    Google Scholar 

  26. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. arXiv (2015)

    Google Scholar 

  27. Telea, A.: An image inpainting technique based on the fast marching method. J. Graph. Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  28. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: NIPS, pp. 341–349 (2012)

    Google Scholar 

  29. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. arXiv (2016)

    Google Scholar 

  30. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. arXiv (2017)

    Google Scholar 

  31. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: ICCV, pp. 479–486 (2011)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSFC (Nos. 61572099, 61872421, and 61922043), NSF of Jiangsu Province (No. BK20180471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Pan, J., Su, Z. (2019). Deep Blind Image Inpainting. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics