Skip to main content

Weakly-Supervised Semantic Segmentation with Mean Teacher Learning

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

Abstract

Weakly-supervised semantic segmentation with image-level labels is a important task as it directly associates high-level semantic to low-level appearance, which can significantly reduce human efforts. Despite the remarkable progress, it is still not as good as fully supervised segmentation methods. To improve the accuracy, in this paper, we proposed a novel framework of weakly-supervised semantic segmentation with mean teacher (WSSS-MT) learning to advance the class estimation of image pixels. More specifically, our proposed framework includes a student network and a teacher network in the segmentation module, which aims to effectively utilize information of the training process. The student learns the semantic segmentation network with an updated supervision, while the teacher uses the exponential moving average of the student to achieve a more accurate estimation of supervision. WSSS-MT employs the trained teacher as final segmentation network. Experimental results on the PASCAL VOC 2012 dataset show that the performance of our framework is better than the competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kolesnikov, A., Lampert, C.H.: Seed, expand and constrain: three principles for weakly-supervised image segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 695–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_42

    Chapter  Google Scholar 

  2. Wei, Y., Feng, J., Liang, X., Cheng, M.-M., Zhao, Y., Yan, S.: Object region mining with adversarial erasing: a simple classification to semantic segmentation approach (2017). arXiv preprint arXiv:1703.08448

  3. Huang, Z., Wang, X., Wang, J., Liu, W., Wang, J.: Weakly-supervised semantic segmentation network with deep seeded region growing. In: CVPR, pp. 7014–7023 (2018)

    Google Scholar 

  4. Qi, X., Liu, Z., Shi, J., Zhao, H., Jia, J.: Augmented feedback in semantic segmentation under image level supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 90–105. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_6

    Chapter  Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2017)

    Google Scholar 

  6. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  7. Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: Proceedings of ICCV, pp. 991–998. IEEE (2011)

    Google Scholar 

  8. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs (2016). arXiv preprint arXiv:1606.00915

  9. Papandreou, G., Chen, L.-C., Murphy, K., Yuille, A.L.: Weakly- and semi-supervised learning of a DCNN for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1742–1750 (2015)

    Google Scholar 

  10. Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation (2018). arXiv preprint arXiv:1803.10464

  11. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 876–885 (2017)

    Google Scholar 

  12. Vernaza, P., Chandraker, M.: Learning random-walk label propagation for weakly-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:1409.1556

  14. Li, K., Wu, Z., Peng, K.-C., Ernst, J., Fu, Y.: Tell me where to look: guided attention inference network (2018). arXiv preprint arXiv:1802.10171

  15. Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: semantic segmentation with point supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_34

    Chapter  Google Scholar 

  16. Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Proceedings of NIPS, vol. 2, no. 3, p. 4 (2011)

    Google Scholar 

  17. Adams, R., Bischof, L.: Seeded region growing. IEEE TPAMI 16(6), 641–647 (1994)

    Article  Google Scholar 

  18. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of CVPR, pp. 2921–2929 (2016)

    Google Scholar 

  19. Wei, Y., et al.: STC: a simple to complex framework for weakly-supervised semantic segmentation. IEEE Trans. Pattern Recogn. Mach. Intell. 39(11), 2314–2320 (2017)

    Article  Google Scholar 

  20. Hong, S., Oh, J., Han, B., Lee, H.: Learning transferrable knowledge for semantic segmentation with deep convolutional neural network. In: IEEE CVPR (2016)

    Google Scholar 

  21. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1529–1537 (2015)

    Google Scholar 

  22. Shimoda, W., Yanai, K.: Distinct class-specific saliency maps for weakly supervised semantic segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 218–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_14

    Chapter  Google Scholar 

  23. Wang, X., You, S., Li, X., Ma, H.: Weakly-supervised semantic segmentation by iteratively mining common object features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1354–1362 (2018)

    Google Scholar 

  24. Pathak, D., Shelhamer, E., Long, J., Darrell, T.: Fully convolutional multi-class multiple instance learning (2014). arXiv preprint arXiv:1412.7144

  25. Bachman, P., Alsharif, O., Precup, D.: Learning with Pseudo-Ensembles, December 2014. arXiv:1412.4864 [cs, stat]

  26. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: a discriminative regional feature integration approach. In: Proceedings of CVPR, pp. 2083–2090 (2013)

    Google Scholar 

  27. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  28. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work is partially supported by the National Natural Science Foundation of China (Grant no. 61772568), the Guangzhou Science and Technology Program (Grant no. 201804010288), and the Fundamental Research Funds for the Central Universities (Grant no. 18lgzd15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, L., Luo, W., Yang, M. (2019). Weakly-Supervised Semantic Segmentation with Mean Teacher Learning. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics