Skip to main content

Robust Image Recovery via Mask Matrix

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

Abstract

This paper studies the problem of recovering an unknown image matrix from noisy observations. Existed works, such as Robust Principal Component Analysis (RPCA), are under the case where the image component and error component are additive, but in real world applications, the components are often non-additive. Especially an image may consist of a foreground object overlaid on a background, where each pixel either belongs to the foreground or the background. To separate image components robustly in such a situation, this paper employs a binary mask matrix which shows the location of each component, and proposes a novel image recovery model, called Masked Robust Principal Component Analysis (MaskRPCA). On one hand, the image component and error component are measured by rank function and sparse function, separately. On another hand, the non-additive between components is characterized by mask matrix. Then we develop an iterative scheme based on alternating direction method of multipliers. Extensive experiments on face images and videos demonstrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code: http://perception.csl.illinois.edu/matrix-rank/sample_code.html.

  2. 2.

    The code: http://www.escience.cn/people/fpnie/papers.html.

  3. 3.

    The code: http://www.ece.uci.edu/anandkumar/.

  4. 4.

    The code: https://panzhous.github.io/.

  5. 5.

    http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.

References

  1. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer-Verlag, New York (2002). https://doi.org/10.1007/b98835

    Book  MATH  Google Scholar 

  2. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis. J. ACM 58(3), 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  3. Wright, J., Ganesh, A., Rao, S., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. In: Proceedings of the 22nd International Conference on Neural Information Processing Systems, pp. 2080–2088. MIT Press, Vancouver (2009)

    Google Scholar 

  4. Bao, B.K., Liu, G., Xu, C., Yan, S.: Inductive robust principal component analysis. IEEE Trans. Image Process. 21(8), 3794–3800 (2012)

    Article  MathSciNet  Google Scholar 

  5. Zhang, F., Yang, J., Tai, Y., Tang, J.: Double nuclear norm-based matrix decomposition for occluded image recovery and background modeling. IEEE Trans. Image Process. 24(6), 1956–1966 (2015)

    Article  MathSciNet  Google Scholar 

  6. Nie, F., Wang, H., Huang, H., Ding, C.: Joint schatten p-norm and lp-norm robust matrix completion for missing value recovery. Knowl. Inf. Syst. 42(3), 525–544 (2015)

    Article  Google Scholar 

  7. Bouwmans, T., Sobral, A., Javed, S., Jung, S., Zahzah, E.: Decomposition into low-rank plus additive matrices for background/foreground separation: a review for a comparative evaluation with a large-scale dataset. Comput. Sci. Rev. 23, 1–71 (2017)

    Article  Google Scholar 

  8. Zhou, Z., Jin, Z.: Double nuclear norm-based robust principal component analysis for image disocclusion and object detection. Neurocomputing 205, 481–489 (2016)

    Article  Google Scholar 

  9. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  10. Gao, G., Jing, X.-Y., Huang, P., Zhou, Q., Wu, S., Yue, D.: Locality-constrained double low-rank representation for effective face hallucination. IEEE Access 4, 8775–8786 (2016)

    Article  Google Scholar 

  11. Li, J., Kong, Y., Zhao, H., Yang, J., Fu, Y.: Learning fast low-rank projection for image classification. IEEE Trans. Image Process. 25(10), 4803–4814 (2016)

    Article  MathSciNet  Google Scholar 

  12. Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)

    Article  MathSciNet  Google Scholar 

  13. Yi, X., Park, D., Chen, Y., Caramanis, C.: Fast algorithms for robust PCA via gradient descent. In: International Conference on Neural Information Processing Systems, pp. 4152–4160. MIT Press, Barcelona (2016)

    Google Scholar 

  14. Tan, B., Liu, B.: Acceleration for proximal stochastic dual coordinate ascent algorithm in solving regularised loss minimisation with l2 norm. Electron. Lett. 54(5), 315–317 (2018)

    Article  Google Scholar 

  15. Mohammadreza, S., Hegde, C.: Fast algorithms for demixing sparse signals from nonlinear observations. IEEE Trans. Signal Process. 65(16), 4209–4222 (2017)

    Article  MathSciNet  Google Scholar 

  16. Lin, Z.C., Chen, M.M., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrix. Technical Report UILU-ENG-09–2215, UIUC, October 2009

    Google Scholar 

  17. Cai, J., Candès, E., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  18. Nie, F., Yuan, J., Huang, H.: Optimal mean robust principal component analysis. In: 31st International Conference on Machine Learning, pp. 1062–1070. MIT Press, Beijing (2014)

    Google Scholar 

  19. Netrapalli, P., Niranjan, U.N., Sanghavi, S.: Provable non-convex robust PCA. In: International Conference on Neural Information Processing Systems, pp. 1107–1115. MIT Press, Montreal (2014)

    Google Scholar 

  20. Zhou, P., Feng, J.: Outlier-robust tensor PCA. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3938–3946. IEEE, Honolulu (2017)

    Google Scholar 

  21. Li, L., Huang, W., Gu, I., Tian, Q.: Statistical modeling of complex backgrounds for foreground objects detection. IEEE Trans. Image Process. 13(11), 1459–1472 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. This work was supported in part by the National Nature Science Foundation of China 61672291 and Six talent peaks project in Jiangsu Province SWYY-034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjie Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, M., Chen, Y. (2019). Robust Image Recovery via Mask Matrix. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics