Skip to main content

Proposal-Aware Visual Saliency Detection with Semantic Attention

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

Abstract

In this paper, we propose a proposal based method for saliency detection. Our method separates the salient proposals out by assigning them a novel attention mechanism, semantic attention (SeA). The attention are established based on the observation that regions with high attention should have similarly semantic concepts with salient objects. The SeA takes the high-level semantic features from Faster Region-based Convolutional Neural Network (Faster R-CNN) to assist the proposal selection in images with complex background. We select the salient proposals according to their semantic attention probabilities. Quantitative and qualitative experiments on four datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mahadevan, V., Vasconcelos, N.: Saliency-based discriminant tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, FL, pp. 1007–1013. IEEE (2009)

    Google Scholar 

  2. Dhavale, N., Itti, L.: Saliency-based multifoveated MPEG compression. In: Seventh International Symposium on Signal Processing and Its Applications, Paris, vol. 1, pp. 229–232. IEEE (2003)

    Google Scholar 

  3. Luo, P., Tian, Y., Wang, X., Tang, X.: Switchable deep network for pedestrian detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OH, pp. 899–906. IEEE (2014)

    Google Scholar 

  4. Malik, J., Shi, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  5. Chang, K.-Y., Liu, T.-L., Chen, H.-T., Lai, S.-H.: Fusing generic objectness and visual saliency for salient object detection. In: Proceedings of IEEE International Conference on Computer Vision, Barcelona, pp. 914–921. IEEE (2011)

    Google Scholar 

  6. Li, S., Lu, H., Lin, Z., Shen, X., Price, B.: Adaptive metric learning for saliency detection. IEEE Trans. Image Process. 24(11), 3321–3331 (2015)

    Article  MathSciNet  Google Scholar 

  7. Jiang, P., Ling, H., Yu, J., Peng, J.: Salient region detection by UFO: uniqueness, focusness and objectness. In: Proceedings of IEEE International Conference on Computer Vision, NSW, pp. 1976–1983. IEEE (2013)

    Google Scholar 

  8. Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_47

    Chapter  Google Scholar 

  9. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, FL, pp. 1597–1604. IEEE (2009)

    Google Scholar 

  10. Cheng, M.-M., Zhang, G.-X., Mitra, N., Huang, X., Hu, S.-M.: Global contrast based salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CO, pp. 409–416. IEEE (2011)

    Google Scholar 

  11. Liu, Z., Zou, W., Le Meur, O.: Saliency tree: a novel saliency detection framework. IEEE Trans. Image Process. 23(5), 1937–1952 (2014)

    Article  MathSciNet  Google Scholar 

  12. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OR, pp. 1155–1162. IEEE (2013)

    Google Scholar 

  13. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_3

    Chapter  Google Scholar 

  14. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OR, pp. 3166–3173. IEEE (2013)

    Google Scholar 

  15. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OH, pp. 2814–2821. IEEE (2014)

    Google Scholar 

  16. Jiang, Z., Davis, L.S.: Submodular salient region detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OR, pp. 2043–2050. IEEE (2013)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, NV, pp. 1097–1105 (2012)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, Montreal, pp. 91–99 (2015)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science arXiv:1409.1556 (2014)

  20. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  21. Liu, T., et al.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)

    Article  Google Scholar 

  22. Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CA, pp. 49–56. IEEE (2010)

    Google Scholar 

  23. Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OH, pp. 280–287. IEEE (2014)

    Google Scholar 

  24. Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, MA, pp. 1265–1274. IEEE (2015)

    Google Scholar 

  25. Tong, N., Lu, H., Ruan, X., Yang, M.-H.: Salient object detection via bootstrap learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, MA, pp. 1884–1892. IEEE (2015)

    Google Scholar 

  26. Qin, Y., Lu, H., Xu, Y., Wang, H.: Saliency detection via cellular automata. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, MA, pp. 110–119. IEEE (2015)

    Google Scholar 

  27. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: a discriminative regional feature integration approach. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OR, pp. 2083–2090. IEEE (2013)

    Google Scholar 

  28. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.-H.: Saliency detection via dense and sparse reconstruction. In: Proceedings of IEEE International Conference on Computer Vision, NSW, pp. 2976–2983. IEEE (2013)

    Google Scholar 

  29. Kim, J., Han, D., Tai, Y.-W., Kim, J.: Salient region detection via high-dimensional color transform. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OH. IEEE (2014)

    Google Scholar 

  30. Wang, L., Lu, H., Ruan, X., Yang, M.-H.: Deep networks for saliency detection via local estimation and global search. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, MA. IEEE (2015)

    Google Scholar 

  31. Li, C., Yuan, Y., Cai, W., Xia, Y.: Robust saliency detection via regularized random walks ranking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, MA, pp. 2710–2717. IEEE (2015)

    Google Scholar 

  32. Wang, T., Zhang, L., Lu, H., Sun, C., Qi, J.: Kernelized subspace ranking for saliency detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 450–466. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L., Song, T., Katayama, T., Shimamoto, T. (2019). Proposal-Aware Visual Saliency Detection with Semantic Attention. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics