Skip to main content

An Attention Bi-box Regression Network for Traffic Light Detection

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

Abstract

Recently, object detection has made significant progress due to the development of deep learning. Since the traffic lights are extremely small objects, it leads to unsatisfactory performance when directly applying the off-the-shelf methods based on deep convolutional neural networks. To deal with this problem, we propose an improved detection network based on Faster R-CNN framework. By introducing an attention module on the top of the network, the network can focus better on the small object regions. At the same time, the features from shallow layers are leveraged for classification and bounding box regression, in which the features of small objects can be captured better. In addition, we design a two-branch network for detecting the traffic light box and the bulb box at the same time. In this manner, the performance of traffic light detection is improved obviously. Compared with other detection algorithms, our model achieves competitive results on VIVA traffic light challenge dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes, D., Maddern, W., Posner, I.: Exploiting 3D semantic scene priors for online traffic light interpretation. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 573–578. IEEE (2015)

    Google Scholar 

  2. Behrendt, K., Novak, L., Botros, R.: A deep learning approach to traffic lights: detection, tracking, and classification. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1370–1377. IEEE (2017)

    Google Scholar 

  3. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  4. Diaz-Cabrera, M., Cerri, P., Sanchez-Medina, J.: Suspended traffic lights detection and distance estimation using color features. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems, pp. 1315–1320. IEEE (2012)

    Google Scholar 

  5. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  6. Gomez, A.E., Alencar, F.A., Prado, P.V., Osório, F.S., Wolf, D.F.: Traffic lights detection and state estimation using hidden Markov models. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 750–755. IEEE (2014)

    Google Scholar 

  7. Gong, J., Jiang, Y., Xiong, G., Guan, C., Tao, G., Chen, H.: The recognition and tracking of traffic lights based on color segmentation and camshift for intelligent vehicles. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 431–435. IEEE (2010)

    Google Scholar 

  8. Huang, J., Gao, Y., Lu, S., Zhao, X., Deng, Y., Gu, M.: Energy-efficient automatic train driving by learning driving patterns. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  9. Jensen, M.B., Nasrollahi, K., Moeslund, T.B.: Evaluating state-of-the-art object detector on challenging traffic light data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 9–15 (2017)

    Google Scholar 

  10. Jensen, M.B., Philipsen, M.P., Møgelmose, A., Moeslund, T.B., Trivedi, M.M.: Vision for looking at traffic lights: issues, survey, and perspectives. IEEE Trans. Intell. Transp. Syst. 17(7), 1800–1815 (2016)

    Article  Google Scholar 

  11. Jetley, S., Lord, N.A., Lee, N., Torr, P.H.: Learn to pay attention. arXiv preprint arXiv:1804.02391 (2018)

  12. Korchev, D., Jammalamadaka, A., Bhattacharyya, R.: Automatic rule learning for autonomous driving using semantic memory. arXiv preprint arXiv:1809.07904 (2018)

  13. Levinson, J., Askeland, J., Dolson, J., Thrun, S.: Traffic light mapping, localization, and state detection for autonomous vehicles. In: 2011 IEEE International Conference on Robotics and Automation, pp. 5784–5791. IEEE (2011)

    Google Scholar 

  14. Li, X., Ma, H., Wang, X., Zhang, X.: Traffic light recognition for complex scene with fusion detections. IEEE Trans. Intell. Transp. Syst. 19(1), 199–208 (2018)

    Article  Google Scholar 

  15. Lindner, F., Kressel, U., Kaelberer, S.: Robust recognition of traffic signals. In: 2004 IEEE Intelligent Vehicles Symposium, pp. 49–53. IEEE (2004)

    Google Scholar 

  16. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 404–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_24

    Chapter  Google Scholar 

  17. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  18. Lu, K.H., Wang, C.M., Chen, S.Y.: Traffic light recognition. J. Chin. Inst. Eng. 31(6), 1069–1075 (2008)

    Article  Google Scholar 

  19. Omachi, M., Omachi, S.: Traffic light detection with color and edge information. In: 2009 2nd IEEE International Conference on Computer Science and Information Technology, pp. 284–287. IEEE (2009)

    Google Scholar 

  20. Omachi, M., Omachi, S.: Detection of traffic light using structural information. In: IEEE 10th International Conference on Signal Processing Proceedings, pp. 809–812. IEEE (2010)

    Google Scholar 

  21. Philipsen, M.P., Jensen, M.B., Møgelmose, A., Moeslund, T.B., Trivedi, M.M.: Traffic light detection: a learning algorithm and evaluations on challenging dataset. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 2341–2345. IEEE (2015)

    Google Scholar 

  22. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  23. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  24. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  26. Shen, Y., Ozguner, U., Redmill, K., Liu, J.: A robust video based traffic light detection algorithm for intelligent vehicles. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 521–526. IEEE (2009)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Siogkas, G., Skodras, E., Dermatas, E.: Traffic lights detection in adverse conditions using color, symmetry and spatiotemporal information. In: VISAPP (1), pp. 620–627 (2012)

    Google Scholar 

  29. Wang, C., Jin, T., Yang, M., Wang, B.: Robust and real-time traffic lights recognition in complex urban environments. Int. J. Comput. Intell. Syst. 4(6), 1383–1390 (2011)

    Article  Google Scholar 

  30. Weber, M., Wolf, P., Zöllner, J.M.: DeepTLR: a single deep convolutional network for detection and classification of traffic lights. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 342–348. IEEE (2016)

    Google Scholar 

  31. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212 (2018)

    Google Scholar 

  32. Zhou, C., Yuan, J.: Bi-box regression for pedestrian detection and occlusion estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 138–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_9

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by Fundamental Research Funds for the Central Universities (No. 2018JBZ001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, J., Zhao, Y., Luo, M., Jiang, X., Liu, T., Wei, S. (2019). An Attention Bi-box Regression Network for Traffic Light Detection. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics