Abstract
Recently, object detection has made significant progress due to the development of deep learning. Since the traffic lights are extremely small objects, it leads to unsatisfactory performance when directly applying the off-the-shelf methods based on deep convolutional neural networks. To deal with this problem, we propose an improved detection network based on Faster R-CNN framework. By introducing an attention module on the top of the network, the network can focus better on the small object regions. At the same time, the features from shallow layers are leveraged for classification and bounding box regression, in which the features of small objects can be captured better. In addition, we design a two-branch network for detecting the traffic light box and the bulb box at the same time. In this manner, the performance of traffic light detection is improved obviously. Compared with other detection algorithms, our model achieves competitive results on VIVA traffic light challenge dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barnes, D., Maddern, W., Posner, I.: Exploiting 3D semantic scene priors for online traffic light interpretation. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 573–578. IEEE (2015)
Behrendt, K., Novak, L., Botros, R.: A deep learning approach to traffic lights: detection, tracking, and classification. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1370–1377. IEEE (2017)
Dai, J., Li, Y., He, K., Sun, J.: R-fcn: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)
Diaz-Cabrera, M., Cerri, P., Sanchez-Medina, J.: Suspended traffic lights detection and distance estimation using color features. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems, pp. 1315–1320. IEEE (2012)
Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)
Gomez, A.E., Alencar, F.A., Prado, P.V., Osório, F.S., Wolf, D.F.: Traffic lights detection and state estimation using hidden Markov models. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 750–755. IEEE (2014)
Gong, J., Jiang, Y., Xiong, G., Guan, C., Tao, G., Chen, H.: The recognition and tracking of traffic lights based on color segmentation and camshift for intelligent vehicles. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 431–435. IEEE (2010)
Huang, J., Gao, Y., Lu, S., Zhao, X., Deng, Y., Gu, M.: Energy-efficient automatic train driving by learning driving patterns. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Jensen, M.B., Nasrollahi, K., Moeslund, T.B.: Evaluating state-of-the-art object detector on challenging traffic light data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 9–15 (2017)
Jensen, M.B., Philipsen, M.P., Møgelmose, A., Moeslund, T.B., Trivedi, M.M.: Vision for looking at traffic lights: issues, survey, and perspectives. IEEE Trans. Intell. Transp. Syst. 17(7), 1800–1815 (2016)
Jetley, S., Lord, N.A., Lee, N., Torr, P.H.: Learn to pay attention. arXiv preprint arXiv:1804.02391 (2018)
Korchev, D., Jammalamadaka, A., Bhattacharyya, R.: Automatic rule learning for autonomous driving using semantic memory. arXiv preprint arXiv:1809.07904 (2018)
Levinson, J., Askeland, J., Dolson, J., Thrun, S.: Traffic light mapping, localization, and state detection for autonomous vehicles. In: 2011 IEEE International Conference on Robotics and Automation, pp. 5784–5791. IEEE (2011)
Li, X., Ma, H., Wang, X., Zhang, X.: Traffic light recognition for complex scene with fusion detections. IEEE Trans. Intell. Transp. Syst. 19(1), 199–208 (2018)
Lindner, F., Kressel, U., Kaelberer, S.: Robust recognition of traffic signals. In: 2004 IEEE Intelligent Vehicles Symposium, pp. 49–53. IEEE (2004)
Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 404–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_24
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Lu, K.H., Wang, C.M., Chen, S.Y.: Traffic light recognition. J. Chin. Inst. Eng. 31(6), 1069–1075 (2008)
Omachi, M., Omachi, S.: Traffic light detection with color and edge information. In: 2009 2nd IEEE International Conference on Computer Science and Information Technology, pp. 284–287. IEEE (2009)
Omachi, M., Omachi, S.: Detection of traffic light using structural information. In: IEEE 10th International Conference on Signal Processing Proceedings, pp. 809–812. IEEE (2010)
Philipsen, M.P., Jensen, M.B., Møgelmose, A., Moeslund, T.B., Trivedi, M.M.: Traffic light detection: a learning algorithm and evaluations on challenging dataset. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 2341–2345. IEEE (2015)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Shen, Y., Ozguner, U., Redmill, K., Liu, J.: A robust video based traffic light detection algorithm for intelligent vehicles. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 521–526. IEEE (2009)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Siogkas, G., Skodras, E., Dermatas, E.: Traffic lights detection in adverse conditions using color, symmetry and spatiotemporal information. In: VISAPP (1), pp. 620–627 (2012)
Wang, C., Jin, T., Yang, M., Wang, B.: Robust and real-time traffic lights recognition in complex urban environments. Int. J. Comput. Intell. Syst. 4(6), 1383–1390 (2011)
Weber, M., Wolf, P., Zöllner, J.M.: DeepTLR: a single deep convolutional network for detection and classification of traffic lights. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 342–348. IEEE (2016)
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212 (2018)
Zhou, C., Yuan, J.: Bi-box regression for pedestrian detection and occlusion estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 138–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_9
Acknowledgements
This work is supported by Fundamental Research Funds for the Central Universities (No. 2018JBZ001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ma, J., Zhao, Y., Luo, M., Jiang, X., Liu, T., Wei, S. (2019). An Attention Bi-box Regression Network for Traffic Light Detection. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-36189-1_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36188-4
Online ISBN: 978-3-030-36189-1
eBook Packages: Computer ScienceComputer Science (R0)