Abstract
The group refers to several pedestrians gathering together with a high motion collectiveness for a sustained period of time. The existing person re-identification (re-id) approaches focus on extracting individual appearance cues, but ignores the correlations of different persons in a group. In this paper, we propose a group-guided re-id method named group retrieval correlation (GRC) to address the above problem, which pays more attention to the correlations of surrounding pedestrians in the same group and reliefs the interference caused by the dependence of appearance cues. Compared with traditional re-id methods which compute naive similarity merely by the appearance characteristics, the GRC based re-id method proposes a novel and optimal person similarity by considering the relationships among groups. Therefore, the proposed approach provides sufficient hints of group relationships, which are supplementary to the appearance features and contributes to constructing a more reliable re-id system. Experimental results demonstrate that the group information promotes person re-id by a large margin on the proposed Group-reID dataset in terms of both hand-crafted descriptors and deep features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Daniel Costea, A., Nedevschi, S.: Semantic channels for fast pedestrian detection. In: CVPR, pp. 2360–2368 (2016)
Feng, Z., Lai, J., Xie, X.: Learning view-specific deep networks for person re-identification. TIP 27(7), 3472–3483 (2018)
Gheissari, N., Sebastian, T., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR, vol. 2, pp. 1528–1535. IEEE (2006)
Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)
Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_21
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: deep filter pairing neural network for person re-identification. In: CVPR, pp. 152–159 (2014)
Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: CVPR, pp. 2197–2206 (2015)
Lin, W., et al.: Group re-identification with multi-grained matching and integration. arXiv preprint arXiv:1905.07108 (2019)
Lisanti, G., Masi, I., Bagdanov, A.D., Del Bimbo, A.: Person re-identification by iterative re-weighted sparse ranking. TPAMI 37(8), 1629–1642 (2015)
Liu, X., Mei, L., Yang, D., Lai, J., Xie, X.: Feature visualization based stacked convolutional neural network for human body detection in a depth image. In: Lai, J.H., et al. (eds.) PRCV 2018. LNCS, vol. 11257, pp. 87–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03335-4_8
Ma, B., Su, Y., Jurie, F.: Local descriptors encoded by fisher vectors for person re-identification. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 413–422. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33863-2_41
Matsukawa, T., Okabe, T., Suzuki, E., Sato, Y.: Hierarchical gaussian descriptor for person re-identification. In: CVPR, pp. 1363–1372 (2016)
Mei, L., Lai, J., Xie, X., Zhu, J., Chen, J.: Illumination-invariance optical flow estimation using weighted regularization transform. TCSVT (2019)
Mei, L., Chen, Z., Lai, J.: Geodesic-based probability propagation for efficient optical flow. Electron. Lett. 54, 758–760 (2018)
Moussaïd, M., et al.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010)
Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: CVPR, vol. 97, pp. 193–199 (1997)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. IJCV 105(3), 222–245 (2013)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sun, X., Zheng, L.: Dissecting person re-identification from the viewpoint of viewpoint. In: CVPR, pp. 608–617 (2019)
Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 501–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_30
Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)
Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. TPAMI 30(10), 1713–1727 (2008)
Wei-Shi, Z., Shaogang, G., Tao, X.: Associating groups of people. In: BMVC, pp. 23–1 (2009)
Xiong, F., Gou, M., Camps, O., Sznaier, M.: Person re-identification using kernel-based metric learning methods. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_1
Yu, H.X., Zheng, W.S., Wu, A., Guo, X., Gong, S., Lai, J.H.: Unsupervised person re-identification by soft multilabel learning. In: CVPR, pp. 2148–2157 (2019)
Zhang, C., Wu, L., Wang, Y.: Crossing generative adversarial networks for cross-view person re-identification. Neurocomputing 340, 259–269 (2019)
Zhang, S., Benenson, R., Schiele, B., et al.: Filtered channel features for pedestrian detection. In: CVPR, vol. 1, p. 4 (2015)
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: CVPR, pp. 1116–1124 (2015)
Zheng, Z., Zheng, L., Yang, Y.: A discriminatively learned CNN embedding for person reidentification. TOMM 14(1), 13 (2018)
Acknowledgements
This work was supported by NSFC (61573387, 61876104).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Mei, L., Lai, J., Feng, Z., Chen, Z., Xie, X. (2019). Person Re-identification Using Group Constraint. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-36189-1_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36188-4
Online ISBN: 978-3-030-36189-1
eBook Packages: Computer ScienceComputer Science (R0)