Skip to main content

Person Re-identification Using Group Constraint

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

Abstract

The group refers to several pedestrians gathering together with a high motion collectiveness for a sustained period of time. The existing person re-identification (re-id) approaches focus on extracting individual appearance cues, but ignores the correlations of different persons in a group. In this paper, we propose a group-guided re-id method named group retrieval correlation (GRC) to address the above problem, which pays more attention to the correlations of surrounding pedestrians in the same group and reliefs the interference caused by the dependence of appearance cues. Compared with traditional re-id methods which compute naive similarity merely by the appearance characteristics, the GRC based re-id method proposes a novel and optimal person similarity by considering the relationships among groups. Therefore, the proposed approach provides sufficient hints of group relationships, which are supplementary to the appearance features and contributes to constructing a more reliable re-id system. Experimental results demonstrate that the group information promotes person re-id by a large margin on the proposed Group-reID dataset in terms of both hand-crafted descriptors and deep features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Daniel Costea, A., Nedevschi, S.: Semantic channels for fast pedestrian detection. In: CVPR, pp. 2360–2368 (2016)

    Google Scholar 

  2. Feng, Z., Lai, J., Xie, X.: Learning view-specific deep networks for person re-identification. TIP 27(7), 3472–3483 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Gheissari, N., Sebastian, T., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR, vol. 2, pp. 1528–1535. IEEE (2006)

    Google Scholar 

  4. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  5. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_21

    Chapter  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  8. Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: deep filter pairing neural network for person re-identification. In: CVPR, pp. 152–159 (2014)

    Google Scholar 

  9. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: CVPR, pp. 2197–2206 (2015)

    Google Scholar 

  10. Lin, W., et al.: Group re-identification with multi-grained matching and integration. arXiv preprint arXiv:1905.07108 (2019)

  11. Lisanti, G., Masi, I., Bagdanov, A.D., Del Bimbo, A.: Person re-identification by iterative re-weighted sparse ranking. TPAMI 37(8), 1629–1642 (2015)

    Article  Google Scholar 

  12. Liu, X., Mei, L., Yang, D., Lai, J., Xie, X.: Feature visualization based stacked convolutional neural network for human body detection in a depth image. In: Lai, J.H., et al. (eds.) PRCV 2018. LNCS, vol. 11257, pp. 87–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03335-4_8

    Chapter  Google Scholar 

  13. Ma, B., Su, Y., Jurie, F.: Local descriptors encoded by fisher vectors for person re-identification. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 413–422. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33863-2_41

    Chapter  Google Scholar 

  14. Matsukawa, T., Okabe, T., Suzuki, E., Sato, Y.: Hierarchical gaussian descriptor for person re-identification. In: CVPR, pp. 1363–1372 (2016)

    Google Scholar 

  15. Mei, L., Lai, J., Xie, X., Zhu, J., Chen, J.: Illumination-invariance optical flow estimation using weighted regularization transform. TCSVT (2019)

    Google Scholar 

  16. Mei, L., Chen, Z., Lai, J.: Geodesic-based probability propagation for efficient optical flow. Electron. Lett. 54, 758–760 (2018)

    Article  Google Scholar 

  17. Moussaïd, M., et al.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010)

    Article  MathSciNet  Google Scholar 

  18. Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., Poggio, T.: Pedestrian detection using wavelet templates. In: CVPR, vol. 97, pp. 193–199 (1997)

    Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR, pp. 779–788 (2016)

    Google Scholar 

  20. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  21. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. IJCV 105(3), 222–245 (2013)

    Article  MathSciNet  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  23. Sun, X., Zheng, L.: Dissecting person re-identification from the viewpoint of viewpoint. In: CVPR, pp. 608–617 (2019)

    Google Scholar 

  24. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 501–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_30

    Chapter  Google Scholar 

  25. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  26. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. TPAMI 30(10), 1713–1727 (2008)

    Article  Google Scholar 

  27. Wei-Shi, Z., Shaogang, G., Tao, X.: Associating groups of people. In: BMVC, pp. 23–1 (2009)

    Google Scholar 

  28. Xiong, F., Gou, M., Camps, O., Sznaier, M.: Person re-identification using kernel-based metric learning methods. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_1

    Chapter  Google Scholar 

  29. Yu, H.X., Zheng, W.S., Wu, A., Guo, X., Gong, S., Lai, J.H.: Unsupervised person re-identification by soft multilabel learning. In: CVPR, pp. 2148–2157 (2019)

    Google Scholar 

  30. Zhang, C., Wu, L., Wang, Y.: Crossing generative adversarial networks for cross-view person re-identification. Neurocomputing 340, 259–269 (2019)

    Article  Google Scholar 

  31. Zhang, S., Benenson, R., Schiele, B., et al.: Filtered channel features for pedestrian detection. In: CVPR, vol. 1, p. 4 (2015)

    Google Scholar 

  32. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: CVPR, pp. 1116–1124 (2015)

    Google Scholar 

  33. Zheng, Z., Zheng, L., Yang, Y.: A discriminatively learned CNN embedding for person reidentification. TOMM 14(1), 13 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (61573387, 61876104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhuang Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mei, L., Lai, J., Feng, Z., Chen, Z., Xie, X. (2019). Person Re-identification Using Group Constraint. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics