Skip to main content

A Hierarchical Student’s t-Distributions Based Unsupervised SAR Image Segmentation Method

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

  • 1467 Accesses

Abstract

We introduce a finite mixture mode using hierarchical Student’s distributions, called hierarchical Student’s t-mixture model (HSMM), for SAR images segmentation. The main advantages of the proposed method are as follows: first, in HSMM, the clustering problem is reformulated as a set of sub-clustering problems each of which can be solved by the traditional SMM algorithm. Second, a novel image content-adaptive mean template is introduced into HSMM to increase its robustness. Third, an expectation maximization algorithm is utilized for HSMM parameters estimation. Finally, experiments show that the HSMM is effective and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gemme, L., Dellepiane, S.G.: An automatic data-driven method for SAR image segmentation in sea surface analysis. IEEE Trans. Geosci. Remote Sens. 56(5), 2633–2646 (2018)

    Google Scholar 

  2. Guo, Y., Jiao, L., Wang, S., Liu, F., Hua, W.: Fuzzy-superpixels for polarimetric SAR images classification. IEEE Trans. Fuzzy Syst. 26(5), 2846–2860 (2018)

    Article  Google Scholar 

  3. Zhang, D., Meng, D., Han, J.: Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 865–878 (2017)

    Article  Google Scholar 

  4. Wang, F., Wu, Y., Zhang, P., Li, M.: Synthetic aperture radar image segmentation using non-linear diffusion-based hierarchical triplet Markov fields model. IET Image Process. 11(12), 1302–1309 (2017)

    Article  Google Scholar 

  5. Akbarizadeh, G., Rahmani, M.: Unsupervised feature learning based on sparse coding and spectral clustering for segmentation of synthetic aperture radar images. IET Comput. Vis. 9(5), 629–638 (2015)

    Article  Google Scholar 

  6. Luo, S., Tong, L., Chen, Y.: A multi-region segmentation method for SAR images based on the Multi-texture model. IEEE Trans. Image Process. 27(5), 2560–2574 (2018)

    Article  MathSciNet  Google Scholar 

  7. Thangarajah, A., Wu, Q.M., Yang, J.Y.: Fusion-based foreground enhancement for background subtraction using multivariate multi-model Gaussian distribution. Inf. Sci. 430, 414–431 (2018)

    Google Scholar 

  8. Nguyen, T.M., Wu, Q.M.J.: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation. IEEE Trans. Med. Imaging 31(1), 103–116 (2012)

    Article  Google Scholar 

  9. Peel, D., McLachlan, G.: Robust mixture modeling using the t-distribution. Stat. Comput. 10(4), 339–348 (2000)

    Article  Google Scholar 

  10. Zhang, H., Wu, Q.M.J., Nguyen, T.M.: A robust fuzzy algorithm based on student’s t-distribution and mean template for image segmentation application. IEEE Signal Process. Lett. 20(2), 117–120 (2013)

    Article  Google Scholar 

  11. Clifford, P.: Markov random fields in statistics. Disord. Phys. Syst. A 14(1), 128–135 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998)

    Article  Google Scholar 

  13. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  14. Michael, I., Robert, A.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6(2), 181–214 (1994)

    Article  Google Scholar 

  15. Chatzis, S.P., Kosmopoulos, D.I., Varvarigou, T.A.: Robust sequential data modeling using an outlier tolerant hidden Markov model. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1657–1669 (2009)

    Article  Google Scholar 

  16. Gerogiannis, D., Nikou, C., Likas, A.: The mixtures of student’s t-distributions as a robust framework for rigid registration. Image Vis. Comput. 27(9), 1285–1294 (2009)

    Article  Google Scholar 

  17. Zhang, H., Wu, Q.M.J., Nguyen, T.M.: Incorporating mean template into finite mixture model for image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 328–335 (2013)

    Article  Google Scholar 

  18. Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Trans. Neural Netw. 16(2), 494–498 (2005)

    Article  Google Scholar 

  19. Zhang, H., Wu, Q.M.J., Nguyen, T.M., Sun, X.: Synthetic aperture radar image segmentation by modified student’s t-mixture model. IEEE Trans. Geosci. Remote Sens. 52(7), 4391–4403 (2014)

    Article  Google Scholar 

  20. Kong, L., Zhang, H., Zheng, Y., Chen, Y., Zhu, J., Wu, Q.M.J.: Image segmentation using a hierarchical student’s-t mixture model. IET Image Process. 11(11), 1094–1102 (2017)

    Article  Google Scholar 

  21. Estellers, V., Soatto, S., Bresson, X.: Adaptive regularization with the structure tensor. IEEE Trans. Image Process. 24(6), 1777–1790 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zheng, Y., Beon, J., Zhang, W., Chen, Y.: Adaptively determining regularization parameters in nonlocal total variation regularization for image denoising. Electron. Lett. 51(2), 144–145 (2015)

    Article  Google Scholar 

  23. Chatzis, S.P., Varvarigou, T.A.: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans. Fuzzy Syst. 16(5), 1351–1361 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Y., Sun, Y., Sun, L., Zhang, H., Jeon, B. (2019). A Hierarchical Student’s t-Distributions Based Unsupervised SAR Image Segmentation Method. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics