Abstract
We introduce a finite mixture mode using hierarchical Student’s distributions, called hierarchical Student’s t-mixture model (HSMM), for SAR images segmentation. The main advantages of the proposed method are as follows: first, in HSMM, the clustering problem is reformulated as a set of sub-clustering problems each of which can be solved by the traditional SMM algorithm. Second, a novel image content-adaptive mean template is introduced into HSMM to increase its robustness. Third, an expectation maximization algorithm is utilized for HSMM parameters estimation. Finally, experiments show that the HSMM is effective and robust.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gemme, L., Dellepiane, S.G.: An automatic data-driven method for SAR image segmentation in sea surface analysis. IEEE Trans. Geosci. Remote Sens. 56(5), 2633–2646 (2018)
Guo, Y., Jiao, L., Wang, S., Liu, F., Hua, W.: Fuzzy-superpixels for polarimetric SAR images classification. IEEE Trans. Fuzzy Syst. 26(5), 2846–2860 (2018)
Zhang, D., Meng, D., Han, J.: Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 865–878 (2017)
Wang, F., Wu, Y., Zhang, P., Li, M.: Synthetic aperture radar image segmentation using non-linear diffusion-based hierarchical triplet Markov fields model. IET Image Process. 11(12), 1302–1309 (2017)
Akbarizadeh, G., Rahmani, M.: Unsupervised feature learning based on sparse coding and spectral clustering for segmentation of synthetic aperture radar images. IET Comput. Vis. 9(5), 629–638 (2015)
Luo, S., Tong, L., Chen, Y.: A multi-region segmentation method for SAR images based on the Multi-texture model. IEEE Trans. Image Process. 27(5), 2560–2574 (2018)
Thangarajah, A., Wu, Q.M., Yang, J.Y.: Fusion-based foreground enhancement for background subtraction using multivariate multi-model Gaussian distribution. Inf. Sci. 430, 414–431 (2018)
Nguyen, T.M., Wu, Q.M.J.: Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation. IEEE Trans. Med. Imaging 31(1), 103–116 (2012)
Peel, D., McLachlan, G.: Robust mixture modeling using the t-distribution. Stat. Comput. 10(4), 339–348 (2000)
Zhang, H., Wu, Q.M.J., Nguyen, T.M.: A robust fuzzy algorithm based on student’s t-distribution and mean template for image segmentation application. IEEE Signal Process. Lett. 20(2), 117–120 (2013)
Clifford, P.: Markov random fields in statistics. Disord. Phys. Syst. A 14(1), 128–135 (1990)
Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998)
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)
Michael, I., Robert, A.: Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6(2), 181–214 (1994)
Chatzis, S.P., Kosmopoulos, D.I., Varvarigou, T.A.: Robust sequential data modeling using an outlier tolerant hidden Markov model. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1657–1669 (2009)
Gerogiannis, D., Nikou, C., Likas, A.: The mixtures of student’s t-distributions as a robust framework for rigid registration. Image Vis. Comput. 27(9), 1285–1294 (2009)
Zhang, H., Wu, Q.M.J., Nguyen, T.M.: Incorporating mean template into finite mixture model for image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 328–335 (2013)
Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E.: A spatially constrained mixture model for image segmentation. IEEE Trans. Neural Netw. 16(2), 494–498 (2005)
Zhang, H., Wu, Q.M.J., Nguyen, T.M., Sun, X.: Synthetic aperture radar image segmentation by modified student’s t-mixture model. IEEE Trans. Geosci. Remote Sens. 52(7), 4391–4403 (2014)
Kong, L., Zhang, H., Zheng, Y., Chen, Y., Zhu, J., Wu, Q.M.J.: Image segmentation using a hierarchical student’s-t mixture model. IET Image Process. 11(11), 1094–1102 (2017)
Estellers, V., Soatto, S., Bresson, X.: Adaptive regularization with the structure tensor. IEEE Trans. Image Process. 24(6), 1777–1790 (2015)
Zheng, Y., Beon, J., Zhang, W., Chen, Y.: Adaptively determining regularization parameters in nonlocal total variation regularization for image denoising. Electron. Lett. 51(2), 144–145 (2015)
Chatzis, S.P., Varvarigou, T.A.: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans. Fuzzy Syst. 16(5), 1351–1361 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zheng, Y., Sun, Y., Sun, L., Zhang, H., Jeon, B. (2019). A Hierarchical Student’s t-Distributions Based Unsupervised SAR Image Segmentation Method. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-36189-1_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36188-4
Online ISBN: 978-3-030-36189-1
eBook Packages: Computer ScienceComputer Science (R0)