Skip to main content

Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11935))

  • 1491 Accesses

Abstract

In this paper, a nonlocal low rank prior associated with spatial smoothness and spectral collaborative sparsity are integrated together for unmixing the hyperspectral data. Based on a fact that the hyperspectral images have self-similarity in nonlocal sense and smoothness in the local sense. To explore the spatial self-similarity, the nonlocal cubic patches are grouped together to form a low-rank matrix. Then, in the framework of linear mixture model, the nuclear norm is constrained to the abundance matrix of these similar patches to enforce low-rank property. In addition, the spectral and local spatial information is also taken into account by introducing collaborative sparsity and TV regularization terms, respectively. Finally, the proposed method is tested on two simulated data sets and a real data set and the results show that the proposed algorithm produces better performance than other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiao, C., Chen, C., McGarvey, R.G., et al.: Multiple instance hybrid estimator for hyperspectral target characterization and sub-pixel target detection. ISPRS J. Photogramm. Remote Sens. 146, 235–250 (2018)

    Article  Google Scholar 

  2. Shi, C., Wang, L.: Linear spatial spectral mixture model. IEEE Trans. Geosci. Remote Sens. 54(6), 3599–3611 (2016)

    Article  Google Scholar 

  3. Marinoni, A., Plaza, A., Gamba, P.: Harmonic mixture modeling for efficient nonlinear hyperspectral unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(9), 4247–4256 (2016)

    Article  Google Scholar 

  4. Li, C., Liu, Y., Cheng, J., et al.: Hyperspectral unmixing with bandwise generalized bilinear model. Remote Sens. 10(10), 1600 (2018)

    Article  Google Scholar 

  5. Tang, W., Shi, Z., Wu, Y., et al.: Sparse unmixing of hyperspectral data using spectral a priori information. IEEE Trans. Geosci. Remote Sens. 53(2), 770–783 (2016)

    Article  Google Scholar 

  6. Iordache, M.D., Bioucas-Dias, J.M., Plaza, A.: Collaborative sparse regression for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 52(1), 341–354 (2013)

    Article  Google Scholar 

  7. Iordache, M.D., Bioucas-Dias, J.M., Plaza, A.: Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012)

    Article  Google Scholar 

  8. Rizkinia, M., Okuda, M.: Joint local abundance sparse unmixing for hyperspectral images. Remote Sens. 9(12), 1224 (2017)

    Article  Google Scholar 

  9. Qu, Q., Nasrabadi, N.M., Tran, T.D.: Abundance estimation for bilinear mixture models via joint sparse and low-rank representation. IEEE Trans. Geosci. Remote Sens. 7(52), 4404–4423 (2014)

    Google Scholar 

  10. Zhang, X., Li, C., Zhang, J., et al.: Hyperspectral unmixing via low-rank representation with space consistency constraint and spectral library pruning. Remote Sens. 10(2), 339 (2018)

    Article  Google Scholar 

  11. Lou, Y., Yin, P., He, Q., et al.: Computing sparse representation in a highly coherent dictionary based on difference of L1 and L2. J. Sci. Comput. 64(1), 178–196 (2015)

    Article  MathSciNet  Google Scholar 

  12. Chang, Y., Yan, L., Zhong, S.: Hyper-Laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, pp. 5901–5909 (2017)

    Google Scholar 

  13. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  14. USGS digital spectral library 06. https://speclab.cr.usgs.gov/spectral.lib06. Accessed 08 June 2016

  15. Altmann, Y., Pereyra, M., Bioucas-Dias, J.: Collaborative sparse regression using spatially correlated supports-application to hyperspectral unmixing. IEEE Trans. Image Process. 24(12), 5800–5811 (2015)

    Article  MathSciNet  Google Scholar 

  16. Guerra, R., Santos, L., López, S., et al.: A new fast algorithm for linearly unmixing hyperspectral images. IEEE Trans. Geosci. Remote Sens. 53(12), 6752–6765 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiyang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, F., Zheng, Y., Sun, L. (2019). Sparse Unmixing for Hyperspectral Image with Nonlocal Low-Rank Prior. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics