Abstract
Image saliency detection plays an important role in the field of computer vision. In order to make the saliency detection achieve better results, this paper proposes an algorithm that combines the global cue with the robust background prior measurement. Specifically, we first get a global ranking of superpixels by absorbing time in Markov chain, which is the absorbing nodes represent the superpixels of the fictitious boundary, and the transient nodes denote the others. Then, the global similarity of transient node can be measured by its absorbing time, so a global ranking for each transient node can be calculated, which is called as global cue in this paper. Finally, considering the remarkable energy optimization model, we integrate the robust background prior measurement with calculated global cue to form a new optimization model for saliency detection. In conclusion, our method is better than some typical significant detection algorithms on several datasets through the experimental verification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, L., Xue, J., Zheng, N., Hua, G.: Automatic salient object extraction with contextual cue. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 105–112. IEEE (2011). https://dl.acm.org/citation.cfm?doid=2009916.2009934
Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection with applications to image thumbnailing. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2232–2239. IEEE (2009). https://ieeexplore.ieee.org/document/5459467
Navalpakkam, V., Itti, L.: An integrated model of top-down and bottom-up attention for optimizing detection speed. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2049–2056. IEEE (2006). https://ieeexplore.ieee.org/document/1641004
Ma, Y.F., Lu, L., Zhang, H.J., Li, M.: A user attention model for video summarization. In: Proceedings of the ACM International Conference on Multimedia, pp. 533–542. ACM (2002). https://dl.acm.org/citation.cfm?doid=641007.641116
Borji, A., Sihite, D.N., Itti, L.: Probabilistic learning of task-specific visual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 470–477. IEEE (2012). https://ieeexplore.ieee.org/document/6247710
Itti, L., Koch, C.: Feature combination strategies for saliency-based visual attention systems. J. Electron. Imaging 10(1), 161–170 (2001)
Gao, D., Vasconcelos, N.: Discriminant saliency for visual recognition from cluttered scenes. In: Advances in Neural Information Processing Systems, pp. 481–488 (2005)
Frintrop, S., Backer, G., Rome, E.: Goal-directed search with a top-down modulated computational attention system. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 117–124. Springer, Heidelberg (2005). https://doi.org/10.1007/11550518_15
Kanan, C., Tong, M.H., Zhang, L., Cottrell, G.W.: SUN: top-down saliency using natural statistics. Vis. Cogn. 17(6–7), 979–1003 (2009). ttps://www.tandfonline.com/doi/abs/10.1080/13506280902771138
Alexe, B., Deselaers, T., Ferrari, V.: What is an object?. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 73–80. IEEE (2010). https://ieeexplore.ieee.org/document/5540226
Yang, J., Yang, M.-H.: Top-down visual saliency via joint CRF and dictionary learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2296–2303. IEEE (2012)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173. IEEE (2013)
Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing Markov chain. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1665–1672. IEEE (2013)
Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821. IEEE (2014)
Xiao, Y., Wang, L., Jiang, B., Tu, Z., Tang, J.: A global and local consistent ranking model for image saliency computation. J. Vis. Commun. Image Represent. 46, 199–207 (2017)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Liu, T., et al.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)
Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition-Workshops, pp. 49–56. IEEE (2010). https://ieeexplore.ieee.org/document/5543739
Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_3
Tong, N., Lu, H., Zhang, L., Ruan, X.: Saliency detection with multi-scale superpixels. IEEE Signal Process. Lett. 21(9), 1035–1039 (2014)
Achanta, R., Hemami, S., Estrada, F., Süsstrunk, S.: Frequency-tuned salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. IEEE (2009). https://ieeexplore.ieee.org/document/5206596
Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–740. IEEE (2012)
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, pp. 545–552 (2007)
Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162. IEEE (2013)
Acknowledgments
This work was supported by the Key Natural Science Project of Anhui Provincial Education Department (KJ2018A0023), the Guangdong Province Science and Technology Plan Projects (2017B010110011), the Anhui Key Research and Development Plan (1804a09020101), the National Basic Research Program (973 Program) of China (2015CB351705), the National Natural Science Foundation of China (61906002, 61402002 and 61876002) and 2018 College Students Innovation and Entrepreneurship Training Program (201810357353).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Z., Liang, Y., Zheng, J., Li, K., Ding, Z., Sun, D. (2019). Saliency Optimization Integrated Robust Background Detection with Global Ranking. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-36189-1_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36188-4
Online ISBN: 978-3-030-36189-1
eBook Packages: Computer ScienceComputer Science (R0)