Abstract
In this paper, we propose a method for egomotion estimation of an indoor mobile robot under planar motion with an RGB-D camera. Our approach mainly deals with the corridor-like structured scenarios and uses the prior knowledge of the environment: when at least one vertical plane is detected using the depth data, egomotion is estimated with one normal of the vertical plane and one point; when there are no vertical planes, a 2-point homography-based algorithm using only point correspondences is presented for the egomotion estimation. The proposed method then is used in a frame-to-frame visual odometry framework. We evaluate our algorithm on the synthetic data and show the application on the real-world data. The experiments show that the proposed approach is efficient and robust enough for egomotion estimation in the Manhattan-like environments compared with the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Bergmann, P., Wang, R., Cremers, D.: Online photometric calibration of auto exposure video for realtime visual odometry and SLAM. IEEE Robot. Autom. Lett. 3(2), 627–634 (2018)
Cao, Z., Sheikh, Y., Banerjee, N.K.: Real-time scalable 6DOF pose estimation for textureless objects. In: 2016 IEEE International conference on Robotics and Automation (ICRA), pp. 2441–2448. IEEE (2016)
Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2018)
Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Robot. 33(2), 249–265 (2017)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2000)
Hartley, R.I.: In defence of the 8-point algorithm. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1064–1070. IEEE (1995)
Hu, H., Sun, H., Ye, P., Jia, Q., Gao, X.: Multiple maps for the feature-based monocular SLAM system. J. Intell. Robot. Syst. 94(2), 389–404 (2019)
Kaess, M.: Simultaneous localization and mapping with infinite planes. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4605–4611. IEEE (2015)
Kim, P., Coltin, B., Kim, H.J.: Visual odometry with drift-free rotation estimation using indoor scene regularities. In: 2017 British Machine Vision Conference (2017)
Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems. In: BMVC, vol. 2, p. 2008 (2008)
Le, P.H., Košecka, J.: Dense piecewise planar RGB-D SLAM for indoor environments. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4944–4949. IEEE (2017)
Li, H., Hartley, R.: Five-point motion estimation made easy. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 1, pp. 630–633. IEEE (2006)
Li, S., Calway, A.: Absolute pose estimation using multiple forms of correspondences from RGB-D frames. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4756–4761. IEEE (2016)
Matsuki, H., von Stumberg, L., Usenko, V., Stückler, J., Cremers, D.: Omnidirectional DSO: direct sparse odometry with fisheye cameras. IEEE Robot. Autom. Lett. 3(4), 3693–3700 (2018)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)
Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 0756–777 (2004)
Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I. IEEE (2004)
Nistér, D., Schaffalitzky, F.: Four points in two or three calibrated views: theory and practice. Int. J. Comput. Vis. 67(2), 211–231 (2006)
Rubio, A., et al.: Efficient monocular pose estimation for complex 3D models. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1397–1402. IEEE (2015)
Saurer, O., Vasseur, P., Boutteau, R., Demonceaux, C., Pollefeys, M., Fraundorfer, F.: Homography based egomotion estimation with a common direction. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 327–341 (2016)
Sun, H., Tang, S., Sun, S., Tong, M.: Vision odometer based on RGB-D camera. In: 2018 International Conference on Robots & Intelligent System (ICRIS), pp. 168–171. IEEE (2018)
Ventura, J., Arth, C., Lepetit, V.: Approximated relative pose solvers for efficient camera motion estimation. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 180–193. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Mu, X., Hou, Z., Zhang, Y. (2019). Egomotion Estimation Under Planar Motion with an RGB-D Camera. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-36189-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36188-4
Online ISBN: 978-3-030-36189-1
eBook Packages: Computer ScienceComputer Science (R0)