Skip to main content

SliceNet: Mask Guided Efficient Feature Augmentation for Attention-Aware Person Re-Identification

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Visual Data Engineering (IScIDE 2019)

Abstract

Person re-identification (re-ID) is a challenging task since the same person captured by different cameras can appear very differently, due to the uncontrolled factors such as occlusion, illumination, viewpoint and pose variation etc. Attention-based person re-ID methods have been extensively studied to focus on discriminative regions of the last convolutional layer, which, however, ignore the low-level fine-grained information. In this paper, we propose a novel SliceNet with efficient feature augmentation modules for open-world person re-identification. Specifically, with the philosophy of divide and conquer, we divide the baseline network into three sub-networks from low, middle and high levels, which are called slice networks, followed by a Self-Alignment Attention Module respectively to learn multi-level discriminative parts. In contrast with existing works that uniformly partition the images into multiple patches, our attention module aims to learn self-alignment masks for discovering and exploiting the align-attention regions. Further, SliceNet is combined with the attention free baseline network to characterize global features. Extensive experiments on the benchmark datasets including Market-1501, CUHK03, and DukeMTMC-reID show that our proposed SliceNet achieves favorable performance compared with the state-of-the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, X., Hospedales, T.M., Tao, X.: Multi-level factorisation net for person re-identification. In: CVPR (2018)

    Google Scholar 

  2. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: CVPR (2017)

    Google Scholar 

  3. Chen, Y., Zhu, X., Gong, S.: Person re-identification by deep learning multi-scale representations. In: IEEE International Conference on Computer Vision Workshop (2017)

    Google Scholar 

  4. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-channel parts-based CNN with improved triplet loss function. In: Computer Vision & Pattern Recognition (2016)

    Google Scholar 

  5. Chi, S., Li, J., Zhang, S., Xing, J., Wen, G., Qi, T.: Pose-driven deep convolutional model for person re-identification. In: ICCV (2017)

    Google Scholar 

  6. Dai, J., Yi, L., He, K., Jian, S.: R-FCN: object detection via region-based fully convolutional networks. In: CVPR (2016)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision & Pattern Recognition (2009)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  9. Fei, W., et al.: Residual attention network for image classification. In: CVPR (2017)

    Google Scholar 

  10. Felzenszwalb, P.F., Mcallester, D.A., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR IEEE Conference on Computer Vision & Pattern Recognition (2008)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  12. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. In: CVPR (2017)

    Google Scholar 

  13. Ba, J., Mnih, V., Kavukcuoglu, K.: Multiple object recognition with visual attention. In: CVPR (2014)

    Google Scholar 

  14. Jing, X., Rui, Z., Feng, Z., Wang, H., Ouyang, W.: Attention-aware compositional network for person re-identification. In: CVPR (2018)

    Google Scholar 

  15. Kalayeh, M.M., Basaran, E., Gokmen, M., Kamasak, M.E., Shah, M.: Human semantic parsing for person re-identification. In: CVPR (2018)

    Google Scholar 

  16. Li, W., Zhu, X., Gong, S.: Person re-identification by deep joint learning of multi-loss classification. In: CVPR (2017)

    Google Scholar 

  17. Lin, Y., Liang, Z., Zheng, Z., Yu, W., Yi, Y.: Improving person re-identification by attribute and identity learning. In: CVPR (2017)

    Google Scholar 

  18. Liu, H., Feng, J., Qi, M., Jiang, J., Yan, S.: End-to-end comparative attention networks for person re-identification. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 26(7), 3492–3506 (2017)

    Article  MathSciNet  Google Scholar 

  19. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Prosser, B., Zheng, W.S., Gong, S., Tao, X.: Person re-identification by support vector ranking. In: British Machine Vision Conference (2010)

    Google Scholar 

  21. Si, J., et al.: Dual attention matching network for context-aware feature sequence based person re-identification. In: CVPR (2018)

    Google Scholar 

  22. Sun, Y., Liang, Z., Yi, Y., Qi, T., Wang, S.: Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: European Conference on Computer Vision (2018)

    Google Scholar 

  23. Sun, Y., Zheng, L., Deng, W., Wang, S.: SVDNet for pedestrian retrieval. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  24. Wei, L., Rui, Z., Tong, X., Wang, X.G.: DeepReID: deep filter pairing neural network for person re-identification. In: Computer Vision & Pattern Recognition (2014)

    Google Scholar 

  25. Wei, L., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: CVPR (2018)

    Google Scholar 

  26. Yan, W., Wang, L., You, Y., Xu, Z., Weinberger, K.Q.: Resource aware person re-identification across multiple resolutions. In: CVPR (2018)

    Google Scholar 

  27. Yao, H., Zhang, S., Zhang, Y., Li, J., Qi, T.: Deep representation learning with part loss for person re-identification. IEEE Trans. Image Process. PP(99), 1 (2017)

    Google Scholar 

  28. Zhang, S., Wen, L., Xiao, B., Zhen, L., Li, S.Z.: Single-shot refinement neural network for object detection. In: CVPR (2017)

    Google Scholar 

  29. Zhao, H., et al.: Spindle net: Person re-identification with human body region guided feature decomposition and fusion. In: IEEE Conference on Computer Vision & Pattern Recognition (2017)

    Google Scholar 

  30. Zhao, L., Li, X., Wang, J., et al.: Deeply-learned part-aligned representations for person re-identification. In: ICCV (2017)

    Google Scholar 

  31. Zheng, F., Sun, X., Jiang, X., Guo, X., Yu, Z., Huang, F.: A coarse-to-fine pyramidal model for person re-identification via multi-loss dynamic training. In: CVPR (2019)

    Google Scholar 

  32. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  33. Zheng, Z., Liang, Z., Yi, Y.: Pedestrian alignment network for large-scale person re-identification. In: CVPR (2017)

    Google Scholar 

  34. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  35. Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: IEEE Conference on Computer Vision & Pattern Recognition (2017)

    Google Scholar 

  36. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: CVPR (2017)

    Google Scholar 

  37. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Zhang, L. (2019). SliceNet: Mask Guided Efficient Feature Augmentation for Attention-Aware Person Re-Identification. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Visual Data Engineering. IScIDE 2019. Lecture Notes in Computer Science(), vol 11935. Springer, Cham. https://doi.org/10.1007/978-3-030-36189-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36189-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36188-4

  • Online ISBN: 978-3-030-36189-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics