Abstract
Effective network traffic identification has important significance for network monitoring and management, network planning and user behavior analysis. In order to select and extract the most effective attribute as well as explore the inherent correlation between the attributes of network traffic. We proposed a new network traffic identification method based on deep factorization machine (DeepFM) which can classify and do correlation analysis simultaneously. Specifically, we first embed the feature vector into a joint space using a low-rank matrix, then followed by a factorization machine (FM) which handle the low-order feature crosses and a neural network which can learn the high- order feature crosses, finally the low-order feature crosses and high-order feature crosses are fused and give the classified result. We validate our method on Moore dataset which is widely used in network traffic research. Our results demonstrate that DeepFM model not only have a strong ability of network traffic identification but also can reveal some inherent correlation between the attributes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dong, S., Zhou, D.D., Zhou, W., et al.: Research on network traffic identification based on improved BP neural network. Appl. Math. Inf. Sci. 7(1), 389–398 (2013)
Madhukar, A., Williamson, C.: A longitudinal study of P2P traffic classification. In: 14th IEEE International Symposium on Modeling, Analysis, and Simulation, pp. 179–188. IEEE, Monterey (2006)
Ma, J., Levchenko, K., Kreibich, C., et al.: Unexpected means of protocol inference. In: 6th ACM SIGCOMM Conference on Internet Measurement, pp. 313–326. ACM, Rio de Janeiro (2006)
Hurley, J., Garcia-Palacios, E., Sezer, S.: Host-based P2P flow identification and use in real-time. ACM Trans. Web 5(2), 1–27 (2011)
Tong, D., Qu, Y.R., Prasanna, V.K.: Accelerating decision tree-based traffic classification on FPGA and multicore platforms. IEEE Trans. Parallel Distrib. Syst. 28(11), 3046–3059 (2017)
Williams, N., Zander, S., Armitage, G.: A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification. ACM SIGCOMM Comput. Commun. Rev. 36(5), 5–10 (2006)
Kornycky, J., Abdul-Hameed, O., Kondoz, A., et al.: Radio frequency traffic classification over WLAN. IEEE/ACM Trans. Network. 25(1), 56–68 (2016)
Cao, J., Fang, Z., Qu, G., et al.: An accurate traffic classification model based on support vector machines. Int. J. Netw. Manag. 27(1), 1962 (2017)
Rendle, S.: Factorization machines. In: 10th IEEE International Conference on Data Mining, pp. 995–1000. IEEE, Sydney (2010)
Sedki, A., Ouazar, D., El Mazoudi, E.: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting. Expert Syst. Appl. 36(3), 4523–4527 (2009)
Guo, H., Tang, R., Ye, Y., et al.: DeepFM: a factorization-machine based neural network for CTR prediction (2017)
Zhu, W., Zeng, N., Wang, N.: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations. In: NESUG Proceedings: Health Care and Life Sciences, vol. 19, p. 67 (2010)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Z., Zhang, J., Zhang, D., Wei, H. (2019). A New Network Traffic Identification Base on Deep Factorization Machine. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Big Data and Machine Learning. IScIDE 2019. Lecture Notes in Computer Science(), vol 11936. Springer, Cham. https://doi.org/10.1007/978-3-030-36204-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-36204-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36203-4
Online ISBN: 978-3-030-36204-1
eBook Packages: Computer ScienceComputer Science (R0)