Skip to main content

GPU-Based Discrete Element Modeling of Geological Faults

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1129))

Included in the following conference series:

Abstract

In this paper, we present an algorithm for numerical simulation of the tectonic movements leading to the formation of geological faults. We use the discrete element method, so that the media are presented as an agglomeration of elastic, visco-elastic, or elasto-plastic interacting particles. This approach can naturally handle finite deformations and can account for the structural discontinuities is the Earth crust. We implement the algorithm using CUDA technology to simulate single statistical realization of the model, whereas MPI is used to parallelize with respect to different statistical realizations. Obtained numerical results show that for low dip angles of the tectonic displacements relatively narrow faults form, whereas high dip angles of the tectonic displacements lead to a wide V-shaped deformation zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, S., Gent, H., Urai, J.: DEM simulation of normal faults in cohesive materials. Tectonophysics 512, 12–21 (2011). https://doi.org/10.1016/j.tecto.2011.09.008

    Article  Google Scholar 

  2. Alpak, F.O., Gray, F., Saxena, N., Dietderich, J., Hofmann, R., Berg, S.: A distributed parallel multiple-relaxation-time lattice-Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images. Comput. Geosci. 22(3), 815–832 (2018). https://doi.org/10.1007/s10596-018-9727-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Bense, V.F., Gleeson, T., Loveless, S.E., Bour, O., Scibek, J.: Fault zone hydrogeology. Earth Sci. Rev. 127, 171–192 (2013). https://doi.org/10.1016/j.earscirev.2013.09.008

    Article  Google Scholar 

  4. de Bono, J., Mcdowell, G., Wanatowski, D.: Discrete element modelling of a flexible membrane for triaxial testing of granular material at high pressures. Géotechnique Lett. 2(4), 199–203 (2012). https://doi.org/10.1680/geolett.12.00040

    Article  Google Scholar 

  5. Botter, C., Cardozo, N., Hardy, S., Lecomte, I., Escalona, A.: From mechanical modeling to seismic imaging of faults: a synthetic workflow to study the impact of faults on seismic. Mar. Pet. Geol. 57, 187–207 (2014). https://doi.org/10.1016/j.marpetgeo.2014.05.013

    Article  Google Scholar 

  6. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974). https://doi.org/10.1080/03610927408827101

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, J.-H., Edwards, P., Ko, K., Kim, Y.-S.: Definition and classification of fault damage zones: a review and a new methodological approach. Earth Sci. Rev. 152, 70–87 (2016). https://doi.org/10.1016/j.earscirev.2015.11.006

    Article  Google Scholar 

  8. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  9. Duan, K., Kwok, C.Y., Ma, X.: DEM simulations of sandstone under true triaxial compressive tests. Acta Geotechnica 12(3), 495–510 (2017). https://doi.org/10.1007/s11440-016-0480-6

    Article  Google Scholar 

  10. Fossen, H., Schultz, R.A., Shipton, Z.K., Mair, K.: Deformation bands in sandstone: a review. J. Geol. Soc. 164(4), 755–769 (2007). https://doi.org/10.1144/0016-76492006-036

    Article  Google Scholar 

  11. González, G., et al.: Crack formation on top of propagating reverse faults of the Chuculay fault system, northern Chile: Insights from field data and numerical modelling. J. Struct. Geol. 30(6), 791–808 (2008). https://doi.org/10.1016/j.jsg.2008.02.008

    Article  Google Scholar 

  12. Gray, G., Morgan, J., Sanz, P.: Overview of continuum and particle dynamics methods for mechanical modeling of contractional geologic structures. J. Struct. Geol. 59(Suppl. C), 19–36 (2014). https://doi.org/10.1016/j.jsg.2013.11.009

    Article  Google Scholar 

  13. Guiton, M.L.E., Sassi, W., Leroy, Y.M., Gauthier, B.: Mechanical constraints on the chronology of fracture activation in folded Devonian sandstone of the western Moroccan anti-atlas. J. Struct. Geol. 25(8), 1317–1330 (2003). https://doi.org/10.1016/S0191-8141(02)00155-4

    Article  Google Scholar 

  14. Hardy, S., Finch, E.: Discrete-element modelling of detachment folding. Basin Res. 17(4), 507–520 (2005). https://doi.org/10.1111/j.1365-2117.2005.00280.x

    Article  Google Scholar 

  15. Hardy, S., McClayc, K., Munozb, J.A.: Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges. Mar. Pet. Geol. 26, 232–248 (2009). https://doi.org/10.1016/j.marpetgeo.2007.12.003

    Article  Google Scholar 

  16. Hausegger, S., Kurz, W., Rabitsch, R., Kiechl, E., Brosch, F.J.: Analysis of the internal structure of a carbonate damage zone: implications for the mechanisms of fault Breccia formation and fluid flow. J. Struct. Geol. 32(9), 1349–1362 (2010). https://doi.org/10.1016/j.jsg.2009.04.014

    Article  Google Scholar 

  17. Kolyukhin, D., et al.: Seismic imaging and statistical analysis of fault facies models. Interpretation 5(4), SP71–SP82 (2017). https://doi.org/10.1190/int-2016-0202.1

    Article  Google Scholar 

  18. Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Local time-space mesh refinement for simulation of elastic wave propagation in multi-scale media. J. Comput. Phys. 281, 669–689 (2015). https://doi.org/10.1016/j.jcp.2014.10.047

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Z., Wang, Y.H., Ma, C.H., Mok, C.M.B.: Experimental characterization and 3D DEM simulation of bond breakages in artificially cemented sands with different bond strengths when subjected to triaxial shearing. Acta Geotechnica 12(5), 987–1002 (2017). https://doi.org/10.1007/s11440-017-0593-6

    Article  Google Scholar 

  20. Lisitsa, V., Tcheverda, V., Volianskaia, V.: GPU-based implementation of discrete element method for simulation of the geological fault geometry and position. Supercomput. Front. Innov. 5(3), 46–50 (2018). https://doi.org/10.14529/jsfi180307

    Article  Google Scholar 

  21. Lisitsa, V., Reshetova, G., Tcheverda, V.: Finite-difference algorithm with local time-space grid refinement for simulation of waves. Comput. Geosci. 16(1), 39–54 (2012). https://doi.org/10.1007/s10596-011-9247-1

    Article  MATH  Google Scholar 

  22. Lisjak, A., Grasselli, G.: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J. Rock Mech. Geotech. Eng. 6(4), 301–314 (2014). https://doi.org/10.1016/j.jrmge.2013.12.007

    Article  Google Scholar 

  23. Luding, S.: Introduction to discrete element methods. Eur. J. Environ. Civil Eng. 12(7–8), 785–826 (2008). https://doi.org/10.1080/19648189.2008.9693050

    Article  Google Scholar 

  24. O’Sullivan, C., Bray, J.D., Li, S.: A new approach for calculating strain for particulate media. Int. J. Numer. Anal. Meth. Geomech. 27(10), 859–877 (2003). https://doi.org/10.1002/nag.304

    Article  MATH  Google Scholar 

  25. Peacock, D.C.P., Dimmen, V., Rotevatn, A., Sanderson, D.J.: A broader classification of damage zones. J. Struct. Geol. 102, 179–192 (2017). https://doi.org/10.1016/j.jsg.2017.08.004

    Article  Google Scholar 

  26. Resor, P.G., Pollard, D.D.: Reverse drag revisited: why footwall deformation may be the key to inferring Listric fault geometry. J. Struct. Geol. 41, 98–109 (2012). https://doi.org/10.1016/j.jsg.2011.10.012

    Article  Google Scholar 

  27. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987). https://doi.org/10.1016/0377-0427(87)90125-7

    Article  MATH  Google Scholar 

  28. Vishnevsky, D., et al.: Correlation analysis of statistical facies fault models. Dokl. Earth Sci. 473(2), 477–481 (2017). https://doi.org/10.1134/s1028334x17040249

    Article  Google Scholar 

  29. Wang, Y., Tonon, F.: Modeling triaxial test on intact rock using discrete element method with membrane boundary. J. Eng. Mech. 135(9), 1029–1037 (2009). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000017

    Article  Google Scholar 

Download references

Acknowledgements

Development of mathematical basis of the algorithm was done by V. Lisitsa in IPGG SB RAS under financial support of the grant of the Precedent of the Russian Federation for young researchers MD-20.2019.5. Parallel implementation of the algorithm was done by V. Lisitsa in IM SB RAS under support of Russian Science Foundation grant no. 19-77-20004. D. Kolyukhin performed the statistical analysis of the results under support of Russian Foundation for Basic Research grant no. 18-05-00031. Numerical experiments were carried out by V. Tcheverda under support of the Russian Science Foundation grant no. 17-17-01128. V. Priimenko applied the clustering analysis of the results. V. Volianskaia did the geological interpretation. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University and cluster NKS-30T+GPU of the Siberian supercomputer center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Lisitsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lisitsa, V., Kolyukhin, D., Tcheverda, V., Volianskaia, V., Priimenko, V. (2019). GPU-Based Discrete Element Modeling of Geological Faults. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2019. Communications in Computer and Information Science, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-36592-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36592-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36591-2

  • Online ISBN: 978-3-030-36592-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics