Skip to main content

Metadata-Driven Semantic Coordination

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2019)

Abstract

Reuse and combination of disparate datasets on the Semantic Web require semantic coordination, i.e. the ability to match heterogeneous semantic models. Systematic evaluations raised the performance of matching systems in terms of compliance and resource consumption. However, it is equally important to be able to identify diverse matching scenarios, covering a range of variations in the datasets such as different modeling languages, heterogeneous lexicalizations, structural differences and to be able to properly handle these scenarios through dedicated techniques and the exploitation of external resources. Furthermore, this should be achieved without requiring manual tinkering of low-level configuration knobs. As of the Semantic Web vision, machines should be able to coordinate and talk to each other to solve problems. To that end, we propose a system that automates most decisions by leveraging explicit metadata regarding the datasets to be matched and potentially useful support datasets. This system uses established metadata vocabularies such as VoID, Dublin Core and the LIME module of OntoLex-Lemon. Consequently, the system can work on real-world cases, leveraging metadata already published alongside self-describing datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The expression “ontology matching” is often used in a broader sense than the one the first word of the term would suggest. “Ontology” is in this case a synecdoche for ontologies, thesauri, lexicons and any sort of knowledge resources modeled according to core knowledge modeling languages for the Semantic Web. The expression ontology matching thus defines the task of discovering and assessing alignments between ontologies and other data models of the RDF family; alternative expressions are ontology mapping or ontology alignment. In the RDF jargon, and following the terminology adopted in the VoID metadata vocabulary [29], a set of alignments is also called a Linkset.

  2. 2.

    http://www.senato.it/3235?testo_generico=745.

  3. 3.

    http://eurovoc.europa.eu/.

References

  1. Berners-Lee, T., Hendler, J.A., Lassila, O.: The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Sci. Am. 284(5), 34–43 (2001)

    Article  Google Scholar 

  2. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)

    Article  Google Scholar 

  3. Berners-Lee, T.: Linked data. In: Design Issues. https://www.w3.org/DesignIssues/LinkedData.html. Accessed 2006

  4. Wiederhold, G.: Interoperation, mediation and ontologies. In: Proceedings International Symposium on Fifth Generation Computer Systems (FGCS 1994), Workshop on Heterogeneous Cooperative Knowledge Bases, Tokyo, Japan, pp. 33–48 (1994)

    Google Scholar 

  5. Madhavan, J., et al.: Web-scale data integration: you can only afford to pay as you go. In: Proceedings of CIDR 2007, pp. 342–350 (2007)

    Google Scholar 

  6. Halevy, A., Franklin, M., Maier, D.: Principles of dataspace systems. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 1–9 (2006)

    Google Scholar 

  7. Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Synth. Lect. Semant. Web: Theory Technol. 1(1), 1–136 (2011)

    Google Scholar 

  8. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38721-0

    Book  MATH  Google Scholar 

  9. Euzenat, J., Shvaiko, P.: Classifications of ontology matching techniques. In: Ontology Matching, pp. 61–72. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49612-0_4

  10. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

    Article  Google Scholar 

  11. Fiorelli, M., Pazienza, M.T., Stellato, A.: A meta-data driven platform for semi-automatic configuration of ontology mediators. In: Calzolari, N., et al. (eds.) Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland, May 2014

    Google Scholar 

  12. Stellato, A.: A language-aware web will give us a bigger and better semantic web. In: Proceedings of the 4th Workshop on the Multilingual Semantic Web, co-located with the 12th Extended Semantic Web Conference – ESWC 2015, Portoroz, Slovenia (2015)

    Google Scholar 

  13. Stellato, A., et al.: Towards VocBench 3: pushing collaborative development of thesauri and ontologies further beyond. In: Mayr, P., Tudhope, D., Golub, K., Wartena, C., De Luca, E.W. (eds.) 17th European Networked Knowledge Organization Systems (NKOS) Workshop. Thessaloniki, Greece, 21 September 2017, pp. 39–52 (2017)

    Google Scholar 

  14. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: a dynamic multistrategy ontology alignment framework. IEEE Trans. Knowl. Data Eng. 21(8), 1218–1232 (2009)

    Article  Google Scholar 

  15. Mochol, M., Jentzsch, A.: Towards a rule-based matcher selection. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS, vol. 5268, pp. 109–119. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87696-0_12

    Chapter  Google Scholar 

  16. Cruz, I.F., Fabiani, A., Caimi, F., Stroe, C., Palmonari, M.: Automatic configuration selection using ontology matching task profiling. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 179–194. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_19

    Chapter  Google Scholar 

  17. Tartir, S., Arpinar, I.B.: Ontology evaluation and ranking using OntoQA. In: International Conference on Semantic Computing (ICSC 2007), pp. 185–192. IEEE (2007)

    Google Scholar 

  18. Faria, D., Pesquita, C., Santos, E., Cruz, I.F., Couto, F.M.: Automatic background knowledge selection for matching biomedical ontologies. PLoS ONE 9(11), 1–9 (2014)

    Article  Google Scholar 

  19. Mascardi, V., Locoro, A., Rosso, P.: Automatic ontology matching via upper ontologies: a systematic evaluation. IEEE Trans. Knowl. Data Eng. 22(5), 609–623 (2010)

    Article  Google Scholar 

  20. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for linked open data. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_26

    Chapter  Google Scholar 

  21. Hertling, S., Paulheim, H.: WikiMatch: using wikipedia for ontology matching. In: Proceedings of the 7th International Conference on Ontology Matching, vol. 946, pp. 37–48 (2012)

    Google Scholar 

  22. Fellbaum, C.: WordNet: An Electronic Lexical Database. WordNet Pointers. MIT Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  23. Bond, F., Paik, K.: A survey of WordNets and their licenses. In: Proceedings of the 6th Global WordNet Conference (GWC 2012), Matsue, Japan, 9–13 January 2012, pp. 64–71 (2012)

    Google Scholar 

  24. Chiarcos, C., Nordhoff, S., Hellmann, S. (eds.): Linked Data in Linguistics. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28249-2

    Book  Google Scholar 

  25. McCrae, J.P., Bosque-Gil, J., Gracia, J., Buitelaar, P., Cimiano, P.: The OntoLex-Lemon model: development and applications. In: Kosem, I., Tiberius, C., Jakubíček, M., Kallas, J., Krek, S., Baisa, V. (eds.) Electronic Lexicography in the 21st Century. Proceedings of eLex 2017 Conference, pp. 587–597 (2017)

    Google Scholar 

  26. Sabou, M., d’Aquin, M., Motta, E.: Exploring the semantic web as background knowledge for ontology matching. In: Spaccapietra, S., et al. (eds.) Journal on Data Semantics XI. LNCS, vol. 5383, pp. 156–190. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92148-6_6

    Chapter  Google Scholar 

  27. Quix, C., Roy, P., Kensche, D.: Automatic selection of background knowledge for ontology matching. In: Proceedings of the International Workshop on Semantic Web Information Management, pp. 5:1–5:7. ACM, New York (2011)

    Google Scholar 

  28. Hartung, M., Groß, A., Kirsten, T., Rahm, E.: Effective mapping composition for biomedical ontologies. In: Workshop on Semantic Interoperability in Medical Informatics (SIMI)

    Google Scholar 

  29. World Wide Web Consortium (W3C): Data Catalog Vocabulary (DCAT). In: World Wide Web Consortium (W3C). http://www.w3.org/TR/vocab-dcat/. Accessed 16 Jan 2014

  30. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets with the VoID Vocabulary (W3C Interest Group Note). In: World Wide Web Consortium (W3C). http://www.w3.org/TR/void/. Accessed 3 Mar 2011

  31. Fiorelli, M., Stellato, A., McCrae, J.P., Cimiano, P., Pazienza, M.T.: LIME: the metadata module for OntoLex. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 321–336. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18818-8_20

    Chapter  Google Scholar 

  32. DCMI Usage Board: DCMI Metadata Terms. In: Dublin Core Metadata Initiative (DCMI). http://dublincore.org/documents/dcmi-terms/. Accessed 14 June 2012

  33. Enea, R., Pazienza, M.T., Turbati, A.: GENOMA: GENeric ontology matching architecture. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS, vol. 9336, pp. 303–315. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24309-2_23

    Chapter  Google Scholar 

  34. David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API 4.0. Semant. Web J. 2(1), 3–10 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been drafted under the 2016.16 action of the ISA2 Programme (https://ec.europa.eu/isa2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Stellato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiorelli, M. et al. (2019). Metadata-Driven Semantic Coordination. In: Garoufallou, E., Fallucchi, F., William De Luca, E. (eds) Metadata and Semantic Research. MTSR 2019. Communications in Computer and Information Science, vol 1057. Springer, Cham. https://doi.org/10.1007/978-3-030-36599-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36599-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36598-1

  • Online ISBN: 978-3-030-36599-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics